Do you want to publish a course? Click here

Constellation Design for Channels Affected by Phase Noise

97   0   0.0 ( 0 )
 Added by Farbod Kayhan
 Publication date 2012
and research's language is English




Ask ChatGPT about the research

In this paper we optimize constellation sets to be used for channels affected by phase noise. The main objective is to maximize the achievable mutual information of the constellation under a given power constraint. The mutual information and pragmatic mutual information of a given constellation is calculated approximately assuming that both the channel and phase noise are white. Then a simulated annealing algorithm is used to jointly optimize the constellation and the binary labeling. The performance of optimized constellations is compared with conventional constellations showing considerable gains in all system scenarios.



rate research

Read More

In this paper we use a variation of simulated annealing algorithm for optimizing two-dimensional constellations with 32 signals. The main objective is to maximize the symmetric pragmatic capacity under the peak-power constraint. The method allows the joint optimization of constellation and binary labeling. We also investigate the performance of the optimized constellation over nonlinear satellite channel under additive white Gaussian noise. We consider the performance over systems with and without pre-distorters. In both cases the optimized constellations perform considerably better than the conventional Amplitude Phase Shift Keying (APSK) modulations, used in the current digital video broadcasting standard (DVB-S2) on satellite channels. Based on our optimized constellations, we also propose a new labeling for the 4+12+16-APSK constellation of the DVB-S2 standard which is Gray over all rings.
In this paper we derive closed-form formulas of feedback capacity and nonfeedback achievable rates, for Additive Gaussian Noise (AGN) channels driven by nonstationary autoregressive moving average (ARMA) noise (with unstable one poles and zeros), based on time-invariant feedback codes and channel input distributions. From the analysis and simulations follows the surprising observations, (i) the use of time-invariant channel input distributions gives rise to multiple regimes of capacity that depend on the parameters of the ARMA noise, which may or may not use feedback, (ii) the more unstable the pole (resp. zero) of the ARMA noise the higher (resp. lower) the feedback capacity, (iii) certain conditions, known as detectability and stabilizability are necessary and sufficient to ensure the feedback capacity formulas and nonfeedback achievable rates {it are independent of the initial state of the ARMA noise}. Another surprizing observation is that Kims cite{kim2010} characterization of feedback capacity which is developed for stable ARMA noise, if applied to the unstable ARMA noise, gives a lower value of feedback capacity compared to our feedback capacity formula.
Existing studies about ambient backscatter communication mostly assume flat-fading channels. However, frequency-selective channels widely exist in many practical scenarios. Therefore, this paper investigates ambient backscatter communication systems over frequency-selective channels. In particular, we propose an interference-free transceiver design to facilitate signal detection at the reader. Our design utilizes the cyclic prefix (CP) of orthogonal frequency-division multiplexing (OFDM) source symbols, which can cancel the signal interference and thus enhance the detection accuracy at the reader. Meanwhile, our design leads to no interference on the existing OFDM communication systems. Next we suggest a chi-square based detector for the reader and derive the optimal detection threshold. Simulations are then provided to corroborate our proposed studies.
154 - Amir Leshem , Michal Yemini 2017
We describe a low complexity method for time domain compensation of phase noise in OFDM systems. We extend existing methods in several respects. First we suggest using the Karhunen-Lo{e}ve representation of the phase noise process to estimate the phase noise. We then derive an improved datadirected choice of basis elements for LS phase noise estimation and present its total least square counterpart problem. The proposed method helps overcome one of the major weaknesses of OFDM systems. We also generalize the time domain phase noise compensation to the multiuser MIMO context. Finally we present simulation results using both simulated and measured phased noise. We quantify the tracking performance in the presence of residual carrier offset.
This paper investigates the linear precoder design for $K$-user interference channels of multiple-input multiple-output (MIMO) transceivers under finite alphabet inputs. We first obtain general explicit expressions of the achievable rate for users in the MIMO interference channel systems. We study optimal transmission strategies in both low and high signal-to-noise ratio (SNR) regions. Given finite alphabet inputs, we show that a simple power allocation design achieves optimal performance at high SNR whereas the well-known interference alignment technique for Gaussian inputs only utilizes a partial interference-free signal space for transmission and leads to a constant rate loss when applied naively to finite-alphabet inputs. Moreover, we establish necessary conditions for the linear precoder design to achieve weighted sum-rate maximization. We also present an efficient iterative algorithm for determining precoding matrices of all the users. Our numerical results demonstrate that the proposed iterative algorithm achieves considerably higher sum-rate under practical QAM inputs than other known methods.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا