Do you want to publish a course? Click here

Building modules from the singular locus

207   0   0.0 ( 0 )
 Publication date 2012
  fields
and research's language is English




Ask ChatGPT about the research

A finitely generated module over a commutative noetherian ring of finite Krull dimension can be built from the prime ideals in the singular locus by iteration of three procedures: taking extensions, direct summands, and cosyzygies. In 2003 Schoutens gave a bound on the number of iterations required to build any module, and in this note we determine the exact number. This building process yields a stratification of the module category, which we study in detail for local rings that have an isolated singularity.



rate research

Read More

We study the weak Lefschetz property of artinian Gorenstein algebras and in particular of artinian complete intersections. In codimension four and higher, it is an open problem whether all complete intersections have the weak Lefschetz property. For a given artinian Gorenstein algebra $A$ we ask what linear forms are Lefschetz elements for this particular algebra, i.e., which linear forms $ell$ give maximal rank for all the multiplication maps $times ell: [A]_i longrightarrow [A]_{i+1}$. This is a Zariski open set and its complement is the emph{non-Lefschetz locus}. For monomial complete intersections, we completely describe the non-Lefschetz locus. For general complete intersections of codimension three and four we prove that the non-Lefschetz locus has the expected codimension, which in particular means that it is empty in a large family of examples. For general Gorenstein algebras of codimension three with a given Hilbert function, we prove that the non-Lefschetz locus has the expected codimension if the first difference of the Hilbert function is of decreasing type. For completeness we also give a full description of the non-Lefschetz locus for artinian algebras of codimension two.
181 - Erik Insko , Martha Precup 2017
Although regular semisimple Hessenberg varieties are smooth and irreducible, semisimple Hessenberg varieties are not necessarily smooth in general. In this paper we determine the irreducible components of semisimple Hessenberg varieties corresponding to the standard Hessenberg space. We prove that these irreducible components are smooth and give an explicit description of their intersections, which constitute the singular locus. We conclude with an example of a semisimple Hessenberg variety corresponding to another Hessenberg space which is singular and irreducible, showing that results of this nature do not hold for all semisimple Hessenberg varieties.
The primary goal of this paper is to investigate the structure of irreducible monomorphisms to and irreducible epimorphisms from finitely generated free modules over a noetherian local ring. Then we show that over such a ring, self-vanishing of Ext and Tor for a finitely generated module admitting such an irreducible homomorphism forces the ring to be regular.
We show that the property of a standard graded algebra R being Cohen-Macaulay is characterized by the existence of a pure Cohen-Macaulay R-module corresponding to any degree sequence of length at most depth(R). We also give a relation in terms of graded Betti numbers, called the Herzog-Kuhl equations, for a pure R-module M to satisfy the condition dim(R) - depth(R) = dim(M) - depth(M). When R is Cohen-Macaulay, we prove an analogous result characterizing all graded Cohen-Macaulay R-modules.
157 - Hongmiao Yu 2021
Let $A$ be a Noetherian flat $K[t]$-algebra, $h$ an integer and let $N$ be a graded $K[t]$-module, we introduce and study $N$-fiber-full up to $h$ $A$-modules. We prove that an $A$-module $M$ is $N$-fiber-full up to $h$ if and only if $mathrm{Ext}^i_A(M, N)$ is flat over $K[t]$ for all $ile h-1$. And we show some applications of this result extending the recent result on squarefree Grobner degenerations by Conca and Varbaro.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا