No Arabic abstract
We show that the property of a standard graded algebra R being Cohen-Macaulay is characterized by the existence of a pure Cohen-Macaulay R-module corresponding to any degree sequence of length at most depth(R). We also give a relation in terms of graded Betti numbers, called the Herzog-Kuhl equations, for a pure R-module M to satisfy the condition dim(R) - depth(R) = dim(M) - depth(M). When R is Cohen-Macaulay, we prove an analogous result characterizing all graded Cohen-Macaulay R-modules.
Let $R$ be a commutative ring with identity and $S$ a multiplicative subset of $R$. In this paper, we introduce and study the notions of $S$-pure $S$-exact sequences and $S$-absolutely pure modules which extend the classical notions of pure exact sequences and absolutely pure modules. And then we characterize $S$-von Neumann regular rings and uniformly $S$-Noetherian rings using $S$-absolutely pure modules.
Minimal cellular resolutions of the edge ideals of cointerval hypergraphs are constructed. This class of d-uniform hypergraphs coincides with the complements of interval graphs (for the case d=2), and strictly contains the class of `strongly stable hypergraphs corresponding to pure shifted simplicial complexes. The polyhedral complexes supporting the resolutions are described as certain spaces of directed graph homomorphisms, and are realized as subcomplexes of mixed subdivisions of the Minkowski sums of simplices. Resolutions of more general hypergraphs are obtained by considering decompositions into cointerval hypergraphs.
An explicit combinatorial minimal free resolution of an arbitrary monomial ideal $I$ in a polynomial ring in $n$ variables over a field of characteristic $0$ is defined canonically, without any choices, using higher-dimensional generalizations of combined spanning trees for cycles and cocycles (hedges) in the upper Koszul simplicial complexes of $I$ at lattice points in $mathbb{Z}^n$. The differentials in these sylvan resolutions are expressed as matrices whose entries are sums over lattice paths of weights determined combinatorially by sequences of hedges (hedgerows) along each lattice path. This combinatorics enters via an explicit matroidal expression for the Moore-Penrose pseudoinverses of the differentials in any CW complex as weighted averages of splittings defined by hedges. This Hedge Formula also yields a projection formula from CW chains to boundaries. The translation from Moore-Penrose combinatorics to free resolutions relies on Wall complexes, which construct minimal free resolutions of graded ideals from vertical splittings of Koszul bicomplexes. The algebra of Wall complexes applied to individual hedgerows yields explicit but noncanonical combinatorial minimal free resolutions of arbitrary monomial ideals in any characteristic.
One can iteratively obtain a free resolution of any monomial ideal $I$ by considering the mapping cone of the map of complexes associated to adding one generator at a time. Herzog and Takayama have shown that this procedure yields a minimal resolution if $I$ has linear quotients, in which case the mapping cone in each step cones a Koszul complex onto the previously constructed resolution. Here we consider cellular realizations of these resolutions. Extending a construction of Mermin we describe a regular CW-complex that supports the resolutions of Herzog and Takayama in the case that $I$ has a `regular decomposition function. By varying the choice of chain map we recover other known cellular resolutions, including the `box of complexes resolutions of Corso, Nagel, and Reiner and the related `homomorphism complex resolutions of Dochtermann and Engstrom. Other choices yield combinatorially distinct complexes with interesting structure, and suggests a notion of a `space of cellular resolutions.
In this memoir, we give a completely constructive version of the celebrate book Finite Free Resolutions by Northcott, and of some other results related to the depth `a la Hochster, the Cayley complexes and their determinants, and the finite projective resolutions.