Do you want to publish a course? Click here

A New Catalog of Faraday Rotation Measures and Redshifts for Extragalactic Radio Sources

136   0   0.0 ( 0 )
 Added by Bryan Gaensler
 Publication date 2012
  fields Physics
and research's language is English




Ask ChatGPT about the research

We present a catalog of Faraday rotation measures (RMs) and redshifts for 4003 extragalactic radio sources detected at 1.4 GHz, derived by identifying optical counterparts and spectroscopic redshifts for linearly polarized radio sources from the NRAO VLA Sky Survey. This catalog is more than an order of magnitude larger than any previous sample of RM vs. redshift, and covers the redshift range 0 < z < 5.3 ; the median redshift of the catalog is z = 0.70, and there are more than 1500 sources at redshifts z > 1. For 3650 of these sources at Galactic latitudes |b| >= 20 degrees, we present a second catalog in which we have corrected for the foreground Faraday rotation of the Milky Way, resulting in an estimate of the residual rotation measure (RRM) that aims to isolate the contribution from extragalactic magnetic fields. We find no significant evolution of RRM with redshift, but observe a strong anti-correlation between RRM and fractional polarization, p, that we argue is the result of beam depolarization from small-scale fluctuations in the foreground magnetic field or electron density. We suggest that the observed variance in RRM and the anti-correlation of RRM with p both require a population of magnetized intervening objects that lie outside the Milky Way but in the foreground to the emitting sources.



rate research

Read More

Faraday rotation measures (RMs) of extragalactic radio sources provide information on line-of-sight magnetic fields, including contributions from our Galaxy, source environments, and the intergalactic medium (IGM). Looking at differences in RMs, $Delta$RM, between adjacent sources on the sky can help isolate these different components. In this work, we classify adjacent polarized sources in the NVSS as random or physical pairs. We recompute and correct the uncertainties in the NVSS RM catalog, since these were significantly overestimated. Our sample contains 317 physical and 5111 random pairs, all with Galactic latitudes $|b|ge20^{circ}$, polarization fractions $ge2%$, and angular separations between $1.^{},$ and $20^{}$. We find an rms $Delta$RM of $14.9pm0.4,$rad m$^{-2}$ and $4.6pm1.1,$rad m$^{-2}$ for random and physical pairs, respectively. This means polarized extragalactic sources that are close on the sky, but at different redshifts, have larger differences in RM than two components of one source. This difference of $sim10,$rad m$^{-2}$ is significant at $5sigma$, and persists in different data subsamples. While there have been other statistical studies of $Delta$RM between adjacent polarized sources, this is the first unambiguous demonstration that some of this RM difference must be extragalactic, thereby providing a firm upper limit on the RM contribution of the IGM. If the $Delta$RMs originate local to the sources, then the local magnetic field difference between random sources is a factor of two larger than between components of one source. Alternatively, attributing the difference in $Delta$RMs to the intervening IGM yields an upper limit on the IGM magnetic field strength of $40,$nG.
123 - J. Xu 2014
We compiled a catalog of Faraday rotation measures (RMs) for 4553 extragalactic radio point sources ublished in literature. These RMs were derived from multi-frequency polarization observations. The RM data are compared to those in the NRAO VLA Sky Survey (NVSS) RM catalog. We reveal a systematic uncertainty of about $10.0 pm 1.5$,rad~m$^{-2}$ in the NVSS RM catalog. The Galactic foreground RM is calculated through a weighted averaging method by using the compiled RM catalog together with the NVSS RM catalog, with careful consideration of uncertainties in the RM data. The data from the catalog and the interface for the Galactic foreground RM calculations are publicly available on the webpage: http://zmtt.bao.ac.cn/RM/.
222 - J. Xu 2014
We obtained rotation measures of 2642 quasars by cross-identification of the most updated quasar catalog and rotation measure catalog. After discounting the foreground Galactic Faraday rotation of the Milky Way, we get the residual rotation measure (RRM) of these quasars. We carefully discarded the effects from measurement and systematical uncertainties of RRMs as well as large RRMs from outliers, and get marginal evidence for the redshift evolution of real dispersion of RRMs which steady increases to 10 rad m$^{-2}$ from $z=0$ to $zsim1$ and is saturated around the value at higher redshifts. The ionized clouds in the form of galaxy, galaxy clusters or cosmological filaments could produce the observed RRM evolutions with different dispersion width. However current data sets can not constrain the contributions from galaxy halos and cosmic webs. Future RM measurements for a large sample of quasars with high precision are desired to disentangle these different contributions.
(abridged) Observations of Faraday rotation for extragalactic sources probe magnetic fields both inside and outside the Milky Way. Building on our earlier estimate of the Galactic contribution, we set out to estimate the extragalactic contributions. We discuss the problems involved; in particular, we point out that taking the difference between the observed values and the Galactic foreground reconstruction is not a good estimate for the extragalactic contributions. We point out a degeneracy between the contributions to the observed values due to extragalactic magnetic fields and observational noise and comment on the dangers of over-interpreting an estimate without taking into account its uncertainty information. To overcome these difficulties, we develop an extended reconstruction algorithm based on the assumption that the observational uncertainties are accurately described for a subset of the data, which can overcome the degeneracy with the extragalactic contributions. We present a probabilistic derivation of the algorithm and demonstrate its performance using a simulation, yielding a high quality reconstruction of the Galactic Faraday rotation foreground, a precise estimate of the typical extragalactic contribution, and a well-defined probabilistic description of the extragalactic contribution for each data point. We then apply this reconstruction technique to a catalog of Faraday rotation observations. We vary our assumptions about the data, showing that the dispersion of extragalactic contributions to observed Faraday depths is most likely lower than 7 rad/m^2, in agreement with earlier results, and that the extragalactic contribution to an individual data point is poorly constrained by the data in most cases.
112 - Daniel C. Homan 2012
Motivated by recent observations that show increasing fractional linear polarization with increasing wavelength in a small number of optically thin jet features, i.e. inverse depolarization, we present a physical model that can explain this effect and may provide a new and complementary probe of the low energy particle population and possible helical magnetic fields in extragalactic radio jets. In our model, structural inhomogeneities in the jet magnetic field create cancellation of polarization along the line of sight. Internal Faraday rotation, which increases like wavelength squared, acts to align the polarization from the far and near sides of the jet, leading to increased polarization at longer wavelengths. Structural inhomogeneities of the right type are naturally produced in helical magnetic fields and will also appear in randomly tangled magnetic fields. We explore both alternatives and find that, for random fields, the length scale for tangling cannot be too small a fraction of the jet diameter and still be consistent with the relatively high levels of fractional polarization observed in these features. We also find that helical magnetic fields naturally produce transverse structure for inverse depolarization which may be observable even in partially resolved jets.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا