No Arabic abstract
Motivated by recent observations that show increasing fractional linear polarization with increasing wavelength in a small number of optically thin jet features, i.e. inverse depolarization, we present a physical model that can explain this effect and may provide a new and complementary probe of the low energy particle population and possible helical magnetic fields in extragalactic radio jets. In our model, structural inhomogeneities in the jet magnetic field create cancellation of polarization along the line of sight. Internal Faraday rotation, which increases like wavelength squared, acts to align the polarization from the far and near sides of the jet, leading to increased polarization at longer wavelengths. Structural inhomogeneities of the right type are naturally produced in helical magnetic fields and will also appear in randomly tangled magnetic fields. We explore both alternatives and find that, for random fields, the length scale for tangling cannot be too small a fraction of the jet diameter and still be consistent with the relatively high levels of fractional polarization observed in these features. We also find that helical magnetic fields naturally produce transverse structure for inverse depolarization which may be observable even in partially resolved jets.
Faraday rotation measures (RMs) of extragalactic radio sources provide information on line-of-sight magnetic fields, including contributions from our Galaxy, source environments, and the intergalactic medium (IGM). Looking at differences in RMs, $Delta$RM, between adjacent sources on the sky can help isolate these different components. In this work, we classify adjacent polarized sources in the NVSS as random or physical pairs. We recompute and correct the uncertainties in the NVSS RM catalog, since these were significantly overestimated. Our sample contains 317 physical and 5111 random pairs, all with Galactic latitudes $|b|ge20^{circ}$, polarization fractions $ge2%$, and angular separations between $1.^{},$ and $20^{}$. We find an rms $Delta$RM of $14.9pm0.4,$rad m$^{-2}$ and $4.6pm1.1,$rad m$^{-2}$ for random and physical pairs, respectively. This means polarized extragalactic sources that are close on the sky, but at different redshifts, have larger differences in RM than two components of one source. This difference of $sim10,$rad m$^{-2}$ is significant at $5sigma$, and persists in different data subsamples. While there have been other statistical studies of $Delta$RM between adjacent polarized sources, this is the first unambiguous demonstration that some of this RM difference must be extragalactic, thereby providing a firm upper limit on the RM contribution of the IGM. If the $Delta$RMs originate local to the sources, then the local magnetic field difference between random sources is a factor of two larger than between components of one source. Alternatively, attributing the difference in $Delta$RMs to the intervening IGM yields an upper limit on the IGM magnetic field strength of $40,$nG.
We present a catalog of Faraday rotation measures (RMs) and redshifts for 4003 extragalactic radio sources detected at 1.4 GHz, derived by identifying optical counterparts and spectroscopic redshifts for linearly polarized radio sources from the NRAO VLA Sky Survey. This catalog is more than an order of magnitude larger than any previous sample of RM vs. redshift, and covers the redshift range 0 < z < 5.3 ; the median redshift of the catalog is z = 0.70, and there are more than 1500 sources at redshifts z > 1. For 3650 of these sources at Galactic latitudes |b| >= 20 degrees, we present a second catalog in which we have corrected for the foreground Faraday rotation of the Milky Way, resulting in an estimate of the residual rotation measure (RRM) that aims to isolate the contribution from extragalactic magnetic fields. We find no significant evolution of RRM with redshift, but observe a strong anti-correlation between RRM and fractional polarization, p, that we argue is the result of beam depolarization from small-scale fluctuations in the foreground magnetic field or electron density. We suggest that the observed variance in RRM and the anti-correlation of RRM with p both require a population of magnetized intervening objects that lie outside the Milky Way but in the foreground to the emitting sources.
(abridged) Observations of Faraday rotation for extragalactic sources probe magnetic fields both inside and outside the Milky Way. Building on our earlier estimate of the Galactic contribution, we set out to estimate the extragalactic contributions. We discuss the problems involved; in particular, we point out that taking the difference between the observed values and the Galactic foreground reconstruction is not a good estimate for the extragalactic contributions. We point out a degeneracy between the contributions to the observed values due to extragalactic magnetic fields and observational noise and comment on the dangers of over-interpreting an estimate without taking into account its uncertainty information. To overcome these difficulties, we develop an extended reconstruction algorithm based on the assumption that the observational uncertainties are accurately described for a subset of the data, which can overcome the degeneracy with the extragalactic contributions. We present a probabilistic derivation of the algorithm and demonstrate its performance using a simulation, yielding a high quality reconstruction of the Galactic Faraday rotation foreground, a precise estimate of the typical extragalactic contribution, and a well-defined probabilistic description of the extragalactic contribution for each data point. We then apply this reconstruction technique to a catalog of Faraday rotation observations. We vary our assumptions about the data, showing that the dispersion of extragalactic contributions to observed Faraday depths is most likely lower than 7 rad/m^2, in agreement with earlier results, and that the extragalactic contribution to an individual data point is poorly constrained by the data in most cases.
We present a study of the line-of-sight magnetic fields in five large-diameter Galactic HII regions. Using the Faraday rotation of background polarized radio sources, as well as dust-corrected H-alpha surface brightness as a probe of electron density, we estimated the strength and orientation of the magnetic field along 93 individual sight-lines through the HII regions. Each of the HII regions displayed a coherent magnetic field. The magnetic field strength (line-of-sight component) in the regions ranges from 2 to 6 microgauss, which is similar to the typical magnetic field strength in the diffuse interstellar medium. We investigated the relationship between magnetic field strength and electron density in the 5 HII regions. The slope of magnetic field vs. density in the low-density regime (0.8 < n_e < 30 per cubic cm) is very slightly above zero. We also calculated the ratio of thermal to magnetic pressure, beta_th, for each data point, which fell in the range 1.01 < beta_th < 25. Finally, we studied the orientation of the magnetic field in the solar neighborhood (d < 1.1 kpc) using our data from 5 HII regions along with existing measurements of the line-of-sight magnetic field strength from polarized pulsars whose distances have been determined from their annual parallax. We identify a net direction for the magnetic field in the solar neighborhood, but find no evidence for a preferred vertical direction of the magnetic field above or below the Galactic plane.
RM Synthesis was recently developed as a new tool for the interpretation of polarized emission data in order to separate the contributions of different sources lying on the same line of sight. Until now the method was mainly applied to discrete sources in Faraday space (Faraday screens). Here we consider how to apply RM Synthesis to reconstruct the Faraday dispersion function, aiming at the further extraction of information concerning the magnetic fields of extended sources, e.g. galaxies. The main attention is given to two related novelties in the method, i.e. the symmetry argument in Faraday space and the wavelet technique. We give a relation between our method and the previous applications of RM Synthesis to point-like sources. We demonstrate that the traditional RM Synthesis for a point-like source indirectly implies a symmetry argument and, in this sense, can be considered as a particular case of the method presented here. Investigating the applications of RM Synthesis to polarization details associated with small-scale magnetic fields, we isolate an option which was not covered by the ideas of the Burn theory, i.e. using quantities averaged over small-scale fluctuations of magnetic field and electron density. We describe the contribution of small-scale fields in terms of Faraday dispersion and beam depolarization. We consider the complex polarization for RM Synthesis without any averaging over small-scale fluctuations of magnetic field and electron density and demonstrate that it allows us to isolate the contribution from small-scale field.