Do you want to publish a course? Click here

Redshift evolution of extragalactic rotation measures

233   0   0.0 ( 0 )
 Added by JinLin Han
 Publication date 2014
  fields Physics
and research's language is English
 Authors J. Xu




Ask ChatGPT about the research

We obtained rotation measures of 2642 quasars by cross-identification of the most updated quasar catalog and rotation measure catalog. After discounting the foreground Galactic Faraday rotation of the Milky Way, we get the residual rotation measure (RRM) of these quasars. We carefully discarded the effects from measurement and systematical uncertainties of RRMs as well as large RRMs from outliers, and get marginal evidence for the redshift evolution of real dispersion of RRMs which steady increases to 10 rad m$^{-2}$ from $z=0$ to $zsim1$ and is saturated around the value at higher redshifts. The ionized clouds in the form of galaxy, galaxy clusters or cosmological filaments could produce the observed RRM evolutions with different dispersion width. However current data sets can not constrain the contributions from galaxy halos and cosmic webs. Future RM measurements for a large sample of quasars with high precision are desired to disentangle these different contributions.



rate research

Read More

We present a catalog of Faraday rotation measures (RMs) and redshifts for 4003 extragalactic radio sources detected at 1.4 GHz, derived by identifying optical counterparts and spectroscopic redshifts for linearly polarized radio sources from the NRAO VLA Sky Survey. This catalog is more than an order of magnitude larger than any previous sample of RM vs. redshift, and covers the redshift range 0 < z < 5.3 ; the median redshift of the catalog is z = 0.70, and there are more than 1500 sources at redshifts z > 1. For 3650 of these sources at Galactic latitudes |b| >= 20 degrees, we present a second catalog in which we have corrected for the foreground Faraday rotation of the Milky Way, resulting in an estimate of the residual rotation measure (RRM) that aims to isolate the contribution from extragalactic magnetic fields. We find no significant evolution of RRM with redshift, but observe a strong anti-correlation between RRM and fractional polarization, p, that we argue is the result of beam depolarization from small-scale fluctuations in the foreground magnetic field or electron density. We suggest that the observed variance in RRM and the anti-correlation of RRM with p both require a population of magnetized intervening objects that lie outside the Milky Way but in the foreground to the emitting sources.
We investigate the possibility of measuring intergalactic magnetic fields using the dispersion measures and rotation measures of fast radio bursts. With Bayesian methods, we produce probability density functions for values of these measures. We distinguish between contributions from the intergalactic medium, the host galaxy and the local environment of the progenitor. To this end, we use constrained, magnetohydrodynamic simulations of the local Universe to compute lines-of-sight integrals from the position of the Milky Way. In particular, we differentiate between predominantly astrophysical and primordial origins of magnetic fields in the intergalactic medium. We test different possible types of host galaxies and probe different distribution functions of fast radio burst progenitor locations inside the host galaxy. Under the assumption that fast radio bursts are produced by magnetars, we use analytic predictions to account for the contribution of the local environment. We find that less than 100 fast radio bursts from magnetars in stellar-wind environments hosted by starburst dwarf galaxies at redshift $z gtrsim 0.5$ suffice to discriminate between predominantly primordial and astrophysical origins of intergalactic magnetic fields. However, this requires the contribution of the Milky Way to be removed with a precision of $approx 1 rm~rad~m^{-2}$. We show the potential existence of a subset of fast radio bursts whose rotation measure carry information on the strength of the intergalactic magnetic field and its origins.
We know that magnetic fields are pervasive across all scales in the Universe and over all of cosmic time and yet our understanding of many of the properties of magnetic fields is still limited. We do not yet know when, where or how the first magnetic fields in the Universe were formed, nor do we fully understand their role in fundamental processes such as galaxy formation or cosmic ray acceleration or how they influence the evolution of astrophysical objects. The greatest challenge to addressing these issues has been a lack of deep, broad bandwidth polarimetric data over large areas of the sky. The Square Kilometre Array will radically improve this situation via an all-sky polarisation survey that delivers both high quality polarisation imaging in combination with observations of 7-14 million extragalactic rotation measures. Here we summarise how this survey will improve our understanding of a range of astrophysical phenomena on scales from individual Galactic objects to the cosmic web.
Faraday rotation measures (RMs) of extragalactic radio sources provide information on line-of-sight magnetic fields, including contributions from our Galaxy, source environments, and the intergalactic medium (IGM). Looking at differences in RMs, $Delta$RM, between adjacent sources on the sky can help isolate these different components. In this work, we classify adjacent polarized sources in the NVSS as random or physical pairs. We recompute and correct the uncertainties in the NVSS RM catalog, since these were significantly overestimated. Our sample contains 317 physical and 5111 random pairs, all with Galactic latitudes $|b|ge20^{circ}$, polarization fractions $ge2%$, and angular separations between $1.^{},$ and $20^{}$. We find an rms $Delta$RM of $14.9pm0.4,$rad m$^{-2}$ and $4.6pm1.1,$rad m$^{-2}$ for random and physical pairs, respectively. This means polarized extragalactic sources that are close on the sky, but at different redshifts, have larger differences in RM than two components of one source. This difference of $sim10,$rad m$^{-2}$ is significant at $5sigma$, and persists in different data subsamples. While there have been other statistical studies of $Delta$RM between adjacent polarized sources, this is the first unambiguous demonstration that some of this RM difference must be extragalactic, thereby providing a firm upper limit on the RM contribution of the IGM. If the $Delta$RMs originate local to the sources, then the local magnetic field difference between random sources is a factor of two larger than between components of one source. Alternatively, attributing the difference in $Delta$RMs to the intervening IGM yields an upper limit on the IGM magnetic field strength of $40,$nG.
Estimates of galaxy distances based on indicators that are independent of cosmological redshift are fundamental to astrophysics. Researchers use them to establish the extragalactic distance scale, to underpin estimates of the Hubble constant, and to study peculiar velocities induced by gravitational attractions that perturb the motions of galaxies with respect to the Hubble flow of universal expansion. In 2006 the NASA/IPAC Extragalactic Database (NED) began making available a comprehensive compilation of redshift-independent extragalactic distance estimates. A decade later, this compendium of distances (NED-D) now contains more than 100,000 individual estimates based on primary and secondary indicators, available for more than 28,000 galaxies, and compiled from over 2,000 references in the refereed astronomical literature. This article describes the methodology, content, and use of NED-D, and addresses challenges to be overcome in compiling such distances. Currently, 75 different distance indicators are in use. We include a figure that facilitates comparison of the indicators with significant numbers of estimates in terms of the minimum, 25th percentile, median, 75th percentile, and maximum distances spanned. Brief descriptions of the indicators, including examples of their use in the database, are given in an Appendix.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا