Do you want to publish a course? Click here

Simultaneous Model Selection and Estimation for Mean and Association Structures with Clustered Binary Data

112   0   0.0 ( 0 )
 Added by Xin Gao Dr.
 Publication date 2012
and research's language is English




Ask ChatGPT about the research

This paper investigates the property of the penalized estimating equations when both the mean and association structures are modelled. To select variables for the mean and association structures sequentially, we propose a hierarchical penalized generalized estimating equations (HPGEE2) approach. The first set of penalized estimating equations is solved for the selection of significant mean parameters. Conditional on the selected mean model, the second set of penalized estimating equations is solved for the selection of significant association parameters. The hierarchical approach is designed to accommodate possible model constraints relating the inclusion of covariates into the mean and the association models. This two-step penalization strategy enjoys a compelling advantage of easing computational burdens compared to solving the two sets of penalized equations simultaneously. HPGEE2 with a smoothly clipped absolute deviation (SCAD) penalty is shown to have the oracle property for the mean and association models. The asymptotic behavior of the penalized estimator under this hierarchical approach is established. An efficient two-stage penalized weighted least square algorithm is developed to implement the proposed method. The empirical performance of the proposed HPGEE2 is demonstrated through Monte-Carlo studies and the analysis of a clinical data set.



rate research

Read More

We study the existence, strong consistency and asymptotic normality of estimators obtained from estimating functions, that are p-dimensional martingale transforms. The problem is motivated by the analysis of evolutionary clustered data, with distributions belonging to the exponential family, and which may also vary in terms of other component series. Within a quasi-likelihood approach, we construct estimating equations, which accommodate different forms of dependency among the components of the response vector and establish multivariate extensions of results on linear and generalized linear models, with stochastic covariates. Furthermore, we characterize estimating functions which are asymptotically optimal, in that they lead to confidence regions for the regression parameters which are of minimum size, asymptotically. Results from a simulation study and an application to a real dataset are included.
228 - Chunhao Cai 2017
This paper deals with the maximum likelihood estimator for the mean-reverting parameter of a first order autoregressive models with exogenous variables, which are stationary Gaussian noises (Colored noise). Using the method of the Laplace transform, both the asymptotic properties and the asymptotic design problem of the maximum likelihood estimator are investigated. The numerical simulation results confirm the theoretical analysis and show that the proposed maximum likelihood estimator performs well in finite sample.
131 - Emilie Devijver 2015
We study a dimensionality reduction technique for finite mixtures of high-dimensional multivariate response regression models. Both the dimension of the response and the number of predictors are allowed to exceed the sample size. We consider predictor selection and rank reduction to obtain lower-dimensional approximations. A class of estimators with a fast rate of convergence is introduced. We apply this result to a specific procedure, introduced in [11], where the relevant predictors are selected by the Group-Lasso.
It is known that there is a dichotomy in the performance of model selectors. Those that are consistent (having the oracle property) do not achieve the asymptotic minimax rate for prediction error. We look at this phenomenon closely, and argue that the set of parameters on which this dichotomy occurs is extreme, even pathological, and should not be considered when evaluating model selectors. We characterize this set, and show that, when such parameters are dismissed from consideration, consistency and asymptotic minimaxity can be attained simultaneously.
122 - W. J. Hall , Jon A. Wellner 2017
Yang (1978) considered an empirical estimate of the mean residual life function on a fixed finite interval. She proved it to be strongly uniformly consistent and (when appropriately standardized) weakly convergent to a Gaussian process. These results are extended to the whole half line, and the variance of the the limiting process is studied. Also, nonparametric simultaneous confidence bands for the mean residual life function are obtained by transforming the limiting process to Brownian motion.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا