Do you want to publish a course? Click here

Controlled Mean-Reverting Estimation for The AR(1) Model with Stationary Gaussian Noise

229   0   0.0 ( 0 )
 Added by Chunhao Cai
 Publication date 2017
and research's language is English
 Authors Chunhao Cai




Ask ChatGPT about the research

This paper deals with the maximum likelihood estimator for the mean-reverting parameter of a first order autoregressive models with exogenous variables, which are stationary Gaussian noises (Colored noise). Using the method of the Laplace transform, both the asymptotic properties and the asymptotic design problem of the maximum likelihood estimator are investigated. The numerical simulation results confirm the theoretical analysis and show that the proposed maximum likelihood estimator performs well in finite sample.



rate research

Read More

130 - Yong Chen , Li Tian , Ying Li 2020
In this paper, we consider an inference problem for the first order autoregressive process driven by a long memory stationary Gaussian process. Suppose that the covariance function of the noise can be expressed as $abs{k}^{2H-2}$ times a function slowly varying at infinity. The fractional Gaussian noise and the fractional ARIMA model and some others Gaussian noise are special examples that satisfy this assumption. We propose a second moment estimator and prove the strong consistency and give the asymptotic distribution. Moreover, when the limit distribution is Gaussian, we give the upper Berry-Esseen bound by means of Fourth moment theorem.
145 - Jean-Marc Azais 2018
We consider the semi-parametric estimation of a scale parameter of a one-dimensional Gaussian process with known smoothness. We suggest an estimator based on quadratic variations and on the moment method. We provide asymptotic approximations of the mean and variance of this estimator, together with asymptotic normality results, for a large class of Gaussian processes. We allow for general mean functions and study the aggregation of several estimators based on various variation sequences. In extensive simulation studies, we show that the asymptotic results accurately depict thefinite-sample situations already for small to moderate sample sizes. We also compare various variation sequences and highlight the efficiency of the aggregation procedure.
In this paper we are interested in the Maximum Likelihood Estimator (MLE) of the vector parameter of an autoregressive process of order $p$ with regular stationary Gaussian noise. We exhibit the large sample asymptotical properties of the MLE under very mild conditions. Simulations are done for fractional Gaussian noise (fGn), autoregressive noise (AR(1)) and moving average noise (MA(1)).
111 - Xin Gao , Grace Y. Yi 2012
This paper investigates the property of the penalized estimating equations when both the mean and association structures are modelled. To select variables for the mean and association structures sequentially, we propose a hierarchical penalized generalized estimating equations (HPGEE2) approach. The first set of penalized estimating equations is solved for the selection of significant mean parameters. Conditional on the selected mean model, the second set of penalized estimating equations is solved for the selection of significant association parameters. The hierarchical approach is designed to accommodate possible model constraints relating the inclusion of covariates into the mean and the association models. This two-step penalization strategy enjoys a compelling advantage of easing computational burdens compared to solving the two sets of penalized equations simultaneously. HPGEE2 with a smoothly clipped absolute deviation (SCAD) penalty is shown to have the oracle property for the mean and association models. The asymptotic behavior of the penalized estimator under this hierarchical approach is established. An efficient two-stage penalized weighted least square algorithm is developed to implement the proposed method. The empirical performance of the proposed HPGEE2 is demonstrated through Monte-Carlo studies and the analysis of a clinical data set.
We discuss the possibilities and limitations of estimating the mean of a real-valued random variable from independent and identically distributed observations from a non-asymptotic point of view. In particular, we define estimators with a sub-Gaussian behavior even for certain heavy-tailed distributions. We also prove various impossibility results for mean estimators.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا