Do you want to publish a course? Click here

Galaxy-Mass Correlations on 10 Mpc Scales in the Deep Lens Survey

333   0   0.0 ( 0 )
 Added by Ami Choi
 Publication date 2012
  fields Physics
and research's language is English




Ask ChatGPT about the research

We examine the projected correlation of galaxies with mass from small scales (<few hundred kpc) where individual dark matter halos dominate, out to 15 Mpc where correlated large-scale structure dominates. We investigate these profiles as a function of galaxy luminosity and redshift. Selecting 0.8 million galaxies in the Deep Lens Survey, we use photometric redshifts and stacked weak gravitational lensing shear tomography out to radial scales of 1 degree from the centers of foreground galaxies. We detect correlated mass density from multiple halos and large-scale structure at radii larger than the virial radius, and find the first observational evidence for growth in the galaxy-mass correlation on 10 Mpc scales with decreasing redshift and fixed range of luminosity. For a fixed range of redshift, we find a scaling of projected halo mass with rest-frame luminosity similar to previous studies at lower redshift. We control systematic errors in shape measurement and photometric redshift, enforce volume completeness through absolute magnitude cuts, and explore residual sample selection effects via simulations.



rate research

Read More

We measure the bulk flow of the local Universe using the 6dF Galaxy Survey peculiar velocity sample (6dFGSv), the largest and most homogeneous peculiar velocity sample to date. 6dFGSv is a Fundamental Plane sample of $sim10^4$ peculiar velocities covering the whole southern hemisphere for galactic latitude $|b| > 10^circ$, out to redshift ${z=0.0537}$. We apply the `Minimum Variance bulk flow weighting method, which allows us to make a robust measurement of the bulk flow on scales of $50$ and $70,h^{-1}{rm Mpc}$. We investigate and correct for potential bias due to the lognormal velocity uncertainties, and verify our method by constructing $Lambda{rm CDM}$ 6dFGSv mock catalogues incorporating the survey selection function. For a hemisphere of radius $50,h^{-1}{rm Mpc}$ we find a bulk flow amplitude of $U=248pm58,{rm km},{rm s}^{-1}$ in the direction $(l,b) = (318^circpm20^circ,40^circpm13^circ)$, and for $70,h^{-1}{rm Mpc}$ we find $U=243pm58,{rm km},{rm s}^{-1}$, in the same direction. Our measurement gives us a constraint on $sigma_8$ of $1.01^{+1.07}_{-0.58}$. Our results are in agreement with other recent measurements of the direction of the bulk flow, and our measured amplitude is consistent with a $Lambda{rm CDM}$ prediction.
We present the first sample of 882 optically selected galaxy clusters in the Deep Lens Survey (DLS), selected with the Bayesian Cluster Finder. We create mock DLS data to assess completeness and purity rates, and find that both are at least $70%$ within 0.1$le z le$ 1.2 for clusters with $M_{200}ge 1.2times 10^{14}M_{odot}$. We verified the integrity of the sample by performing several comparisons with other optical, weak lensing, X-ray and spectroscopic surveys which overlap the DLS footprint: the estimated redshifts are consistent with the spectroscopic redshifts of known clusters (for $z>0.25$ where saturation in the DLS is not an issue); our richness estimates in combination with a previously calibrated richness-mass relation yields individual cluster mass estimates consistent with available SHeLS dynamical mass estimates; synthetic mass maps made from the optical mass estimates are correlated ($>3sigma$ significance) with the weak lensing mass maps; and the mass function thus derived is consistent with theoretical predictions for the CDM scenario. With the verified sample we investigated correlations between the brightest cluster galaxies (BCG) properties and the host cluster properties within a broader range in redshift (0.25 $le z le$ 0.8) and mass ($ge2.4times 10^{14}M_{odot}$) than in previous work. We find that the slope of the BCG magnitude-redshift relation throughout this redshift range is consistent with that found at lower redshifts. This result supports an extrapolation to higher redshift of passive evolution of the BCG within the hierarchical scenario.
We present robust constraints on the stochastic gravitational waves (GWs) at Mpc scales from the cosmic microwave background (CMB) data. CMB constraints on GWs are usually characterized as the tensor-to-scalar ratio, assuming specifically a power-law form of the primordial spectrum, and are obtained from the angular spectra of CMB. Here, we relax the assumption of the power-law form, and consider to what extent one can constrain a monochromatic GW at shorter wavelengths. Previously, such a constraint has been derived at the wavelengths larger than the resolution scale of the CMB measurements, typically above $100$Mpc (below $10^{-16}$Hz in frequency). However, GWs whose wavelength is much shorter than $100$Mpc can imprint a small but non-negligible signal on CMB anisotropies at observed angular scales, $ell<1000$. Here, using the CMB temperature, polarization, and lensing data set, we obtain the best constraints to date at $10^{-16}-10^{-14}$Hz of the GWs produced before the time of decoupling, which are tighter than those derived from the astrometric measurements and upper bounds on extra radiations. In the future, the constraints on GWs at Mpc scales will be further improved by several orders of magnitude with the precision $B$-mode measurement on large scales, $ell<100$.
We use stellar masses, photometry, lensing, and velocity dispersions to investigate empirical correlations for the final sample of 73 early-type lens galaxies (ETGs) from the SLACS survey. The traditional correlations (Fundamental Plane [FP] and its projections) are consistent with those found for non-lens galaxies, supporting the thesis that SLACS lens galaxies are representative of massive ETGs. The addition of strong lensing estimates of the total mass allows us to gain further insights into their internal structure: i) the mean slope of the total mass density profile is <gamma> = 2.078+/-0.027 with an intrinsic scatter of 0.16+/-0.02; ii) gamma correlates with effective radius and central mass density, in the sense that denser galaxies have steeper profiles; iii) the dark matter fraction within reff/2 is a monotonically increasing function of galaxy mass and size; iv) the dimensional mass M_dim is proportional to the total mass, and both increase more rapidly than stellar mass M*; v) the Mass Plane (MP), obtained by replacing surface brightness with surface mass density in the FP, is found to be tighter and closer to the virial relation than the FP and the M*P, indicating that the scatter of those relations is dominated by stellar population effects; vi) we construct the Fundamental Hyper-Plane by adding stellar masses to the MP and find the M* coefficient to be consistent with zero and no residual intrinsic scatter. Our results demonstrate that the dynamical structure of ETGs is not scale invariant and that it is fully specified by the total mass, r_eff, and sigma. Although the basic trends can be explained qualitatively in terms of varying star formation efficiency as a function of halo mass and as the result of dry and wet mergers, reproducing quantitatively the observed correlations and their tightness may be a significant challenge for galaxy formation models.
71 - Renyue Cen 2016
An analysis of the physics-rich endgame of reionization at $z=5.7$ is performed, utilizing jointly the observations of the Ly$alpha$ forest, the mean free path of ionizing photons, the luminosity function of galaxies and new physical insight. We find that an upper limit on ${rm tau_e}$ provides a constraint on the minimum mean free path (of ionizing photons) that is primarily due to dwarf galaxies, which in turn yields a new and yet the strongest constraint on the matter power spectrum on $10^6-10^9M_odot$ scales. With the latest Planck measurements of ${rm tau_e = 0.055 pm 0.009}$, we can place an upper limit of $(8.9times 10^6, 3.8times 10^7, 4.2times 10^8)M_odot$ on the lower cutoff mass of the halo mass function, or equivalent a lower limit on warm dark matter particle mass ${rm m_x ge (15.1, 9.8, 4.6)keV}$ or on sterile neutrino mass ${rm m_s ge (161, 90, 33)keV}$, at $(1, 1.4, 2.2)sigma$ confidence level, respectively.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا