Do you want to publish a course? Click here

CMB Constraints on the Stochastic Gravitational-Wave Background at Mpc scales

84   0   0.0 ( 0 )
 Added by Toshiya Namikawa
 Publication date 2019
  fields Physics
and research's language is English




Ask ChatGPT about the research

We present robust constraints on the stochastic gravitational waves (GWs) at Mpc scales from the cosmic microwave background (CMB) data. CMB constraints on GWs are usually characterized as the tensor-to-scalar ratio, assuming specifically a power-law form of the primordial spectrum, and are obtained from the angular spectra of CMB. Here, we relax the assumption of the power-law form, and consider to what extent one can constrain a monochromatic GW at shorter wavelengths. Previously, such a constraint has been derived at the wavelengths larger than the resolution scale of the CMB measurements, typically above $100$Mpc (below $10^{-16}$Hz in frequency). However, GWs whose wavelength is much shorter than $100$Mpc can imprint a small but non-negligible signal on CMB anisotropies at observed angular scales, $ell<1000$. Here, using the CMB temperature, polarization, and lensing data set, we obtain the best constraints to date at $10^{-16}-10^{-14}$Hz of the GWs produced before the time of decoupling, which are tighter than those derived from the astrometric measurements and upper bounds on extra radiations. In the future, the constraints on GWs at Mpc scales will be further improved by several orders of magnitude with the precision $B$-mode measurement on large scales, $ell<100$.



rate research

Read More

We search for an isotropic stochastic gravitational-wave background (GWB) in the newly released $11$-year dataset from the North American Nanohertz Observatory for Gravitational Waves (NANOGrav). While we find no significant evidence for a GWB, we place constraints on a GWB from a population of supermassive black-hole binaries, cosmic strings, and a primordial GWB. For the first time, we find that the GWB upper limits and detection statistics are sensitive to the Solar System ephemeris (SSE) model used, and that SSE errors can mimic a GWB signal. We developed an approach that bridges systematic SSE differences, producing the first PTA constraints that are robust against SSE uncertainties. We thus place a $95%$ upper limit on the GW strain amplitude of $A_mathrm{GWB}<1.45times 10^{-15}$ at a frequency of $f=1$ yr$^{-1}$ for a fiducial $f^{-2/3}$ power-law spectrum, and with inter-pulsar correlations modeled. This is a factor of $sim 2$ improvement over the NANOGrav $9$-year limit, calculated using the same procedure. Previous PTA upper limits on the GWB will need revision in light of SSE systematic uncertainties. We use our constraints to characterize the combined influence on the GWB of the stellar mass-density in galactic cores, the eccentricity of SMBH binaries, and SMBH--galactic-bulge scaling relationships. We constrain cosmic-string tension using recent simulations, yielding an SSE-marginalized $95%$ upper limit on the cosmic string tension of $Gmu < 5.3times 10^{-11}$---a factor of $sim 2$ better than the published NANOGrav $9$-year constraints. Our SSE-marginalized $95%$ upper limit on the energy density of a primordial GWB (for a radiation-dominated post-inflation Universe) is $Omega_mathrm{GWB}(f)h^2<3.4times10^{-10}$.
The paucity of observed supermassive black hole binaries (SMBHBs) may imply that the gravitational wave background (GWB) from this population is anisotropic, rendering existing analyses sub-optimal. We present the first constraints on the angular distribution of a nanohertz stochastic GWB from circular, inspiral-driven SMBHBs using the $2015$ European Pulsar Timing Array data [Desvignes et al. (in prep.)]. Our analysis of the GWB in the $sim 2 - 90$ nHz band shows consistency with isotropy, with the strain amplitude in $l>0$ spherical harmonic multipoles $lesssim 40%$ of the monopole value. We expect that these more general techniques will become standard tools to probe the angular distribution of source populations.
Strong lensing of gravitational waves is more likely for distant sources but predicted event rates are highly uncertain with many astrophysical origins proposed. Here we open a new avenue to estimate the event rate of strongly lensed systems by exploring the amplitude of the stochastic gravitational wave background (SGWB). This method can provide a direct upper bound on the high redshift binary coalescing rates, which can be translated into an upper bound on the expected rate of strongly lensed systems. We show that from the ongoing analysis of the Laser Interferometer Gravitational-wave Observatory (LIGO)-Virgo and in the future from the LIGO-Virgo design sensitivity stringent bounds on the lensing event rate can be imposed using the SGWB signal. Combining measurements of loud gravitational wave events with an unresolved stochastic background detection will improve estimates of the numbers of lensed events at high redshift. The proposed method is going to play a crucial in understanding the population of lensed and unlensed systems from gravitational wave observations.
In the literature different approaches have been proposed to compute the anisotropies of the astrophysical gravitational wave background. The different expressions derived, although starting from our work Cusin, Pitrou, Uzan, Phys.Rev.D96, 103019 (2017) [1], seem to differ. This article compares the various theoretical expressions proposed so far and provides a separate derivation based on a Boltzmann approach. We show that all the theoretical formula in the literature are equivalent and boil down to the one of Ref. [1] when a proper matching of terms and integration by parts are performed. The difference between the various predictions presented for anisotropies in a cosmological context can only lie in the astrophysical modeling of sources, and neither in the theory nor in the cosmological description of the large scale structures. Finally we comment on the gauge invariance of expressions.
The black hole merging rates inferred after the gravitational-wave detection by Advanced LIGO/VIRGO and the relatively high mass of the progenitors are consistent with models of dark matter made of massive primordial black holes (PBH). PBH binaries emit gravitational waves in a broad range of frequencies that will be probed by future space interferometers (LISA) and pulsar timing arrays (PTA). The amplitude of the stochastic gravitational-wave background expected for PBH dark matter is calculated taking into account various effects such as initial eccentricity of binaries, PBH velocities, mass distribution and clustering. It allows a detection by the LISA space interferometer, and possibly by the PTA of the SKA radio-telescope. Interestingly, one can distinguish this background from the one of non-primordial massive binaries through a specific frequency dependence, resulting from the maximal impact parameter of binaries formed by PBH capture, depending on the PBH velocity distribution and their clustering properties. Moreover, we find that the gravitational wave spectrum is boosted by the width of PBH mass distribution, compared with that of the monochromatic spectrum. The current PTA constraints already rule out broad-mass PBH models covering more than three decades of masses, but evading the microlensing and CMB constraints due to clustering.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا