Do you want to publish a course? Click here

IRAS 20050+2720: Anatomy of a young stellar cluster

241   0   0.0 ( 0 )
 Publication date 2012
  fields Physics
and research's language is English




Ask ChatGPT about the research

IRAS 20050+2720 is young star forming region at a distance of 700 pc without apparent high mass stars. We present results of our multiwavelength study of IRAS 20050+2720 which includes observations by Chandra and Spitzer, and 2MASS and UBVRI photometry. In total, about 300 YSOs in different evolutionary stages are found. We characterize the distribution of young stellar objects (YSOs) in this region using a minimum spanning tree (MST) analysis. We newly identify a second cluster core, which consists mostly of class II objects, about 10 arcmin from the center of the cloud. YSOs of earlier evolutionary stages are more clustered than more evolved objects. The X-ray luminosity function (XLF) of IRAS 20050+2720 is roughly lognormal, but steeper than the XLF of the more massive Orion nebula complex. IRAS 20050+2720 shows a lower N_H/A_K ratio compared with the diffuse ISM.



rate research

Read More

We present a time-variability study of young stellar objects in the cluster IRAS 20050+2720, performed at 3.6 and 4.5 micron with the Spitzer Space Telescope; this study is part of the Young Stellar Object VARiability project (YSOVAR). We have collected light curves for 181 cluster members over 40 days. We find a high variability fraction among embedded cluster members of ca. 70%, whereas young stars without a detectable disk display variability less often (in ca. 50% of the cases) and with lower amplitudes. We detect periodic variability for 33 sources with periods primarily in the range of 2-6 days. Practically all embedded periodic sources display additional variability on top of their periodicity. Furthermore, we analyze the slopes of the tracks that our sources span in the color-magnitude diagram (CMD). We find that sources with long variability time scales tend to display CMD slopes that are at least partially influenced by accretion processes, while sources with short variability time scales tend to display extinction-dominated slopes. We find a tentative trend of X-ray detected cluster members to vary on longer time scales than the X-ray undetected members.
123 - M.T. Beltran 2007
Context. This is the third of a series of papers devoted to study in detail and with high-angular resolution intermediate-mass molecular outflows and their powering sources. Aims. The aim of this paper is to study the intermediate-mass YSO IRAS 20050+2720 and its molecular outflow, and put the results of this and the previous studied sources in the context of intermediate-mass star formation. Methods. We carried out VLA observations of the 7 mm continuum emission, and OVRO observations of the 2.7 mm continuum emission, CO(1-0), C18O(1-0), and HC3N(12-11) to map the core towards IRAS 20050+2720. The high-angular resolution of the observations allowed us to derive the properties of the dust emission, the molecular outflow, and the dense protostellar envelope. By adding this source to the sample of intermediate-mass protostars with outflows, we compare their properties and evolution with those of lower mass counterparts. Results. The 2.7mm continuum emission has been resolved into three sources, labeled OVRO 1, OVRO 2, and OVRO 3. Two of them, OVRO 1 and OVRO 2, have also been detected at 7 mm. OVRO 3, which is located close to the C18O emission peak, could be associated with IRAS 20050+2720. The mass of the sources, estimated from the dust continuum emission, is 6.5 Msun for OVRO 1, 1.8 Msun for OVRO 2, and 1.3 Msun for OVRO 3. The CO(1-0) emission traces two bipolar outflows within the OVRO field of view, a roughly east-west bipolar outflow, labeled A, driven by the intermediate-mass source OVRO 1, and a northeast-southwest bipolar outflow, labeled B, probably powered by a YSO engulfed in the circumstellar envelope surrounding OVRO 1.
We present high-angular-resolution {it Hubble Space Telescope (HST)} optical and near-infrared imaging of the compact planetary nebula (PN) IRAS 21282+5050. Optical images of this object reveal several complex morphological structures including three pairs of bipolar lobes and an elliptical shell lying close to the plane of the sky. From near-infrared observations, we found a dust torus oriented nearly perpendicular to the major axis of elliptical shell. The results suggest that IRAS 21282+5050 is a multipolar PN, and these structures developed early during the post asymptotic-giant-branch (AGB) evolution. From a three-dimensional (3-D) model, we derived the physical dimensions of these apparent structures. When the 3-D model is viewed from different orientations, IRAS 21282+5050 shows similar apparent structures as other multipolar PNs. Analysis of the spectral energy distribution and optical spectroscopic observations of the nebula suggests the presence of a cool companion to the hot central star responsible for the ionization of the nebula. Whether the binary nature of the central star has any relations with the multipolar structure of the nebula needs to be further investigated.
We present 3 mm ALMA continuum and line observations at resolutions of 6.5 au and 13 au respectively, toward the Class 0 system IRAS 16293-2422 A. The continuum observations reveal two compact sources towards IRAS 16293-2422 A, coinciding with compact ionized gas emission previously observed at radio wavelengths (A1 and A2), confirming the long-known radio sources as protostellar. The emission towards A2 is resolved and traces a dust disk with a FWHM size of ~12 au, while the emission towards A1 sets a limit to the FWHM size of the dust disk of ~4 au. We also detect spatially resolved molecular kinematic tracers near the protostellar disks. Several lines of the J=5-4 rotational transition of HNCO, NH2CHO and t-HCOOH are detected, with which we derived individual line-of-sight velocities. Using these together with the CS (J=2-1), we fit Keplerian profiles towards the individual compact sources and derive masses of the central protostars. The kinematic analysis indicates that A1 and A2 are a bound binary system. Using this new context for the previous 30 years of VLA observations, we fit orbital parameters to the relative motion between A1 and A2 and find the combined protostellar mass derived from the orbit is consistent with the masses derived from the gas kinematics. Both estimations indicate masses consistently higher (0.5< M1<M2<2 Msun) than previous estimations using lower resolution observations of the gas kinematics. The ALMA high-resolution data provides a unique insight into the gas kinematics and masses of a young deeply embedded bound binary system.
IRAS 09002-4732 is a poorly studied embedded cluster of stars in the Vela Molecular Ridge at a distance of 1.7kpc. Deep observations with the Chandra X-ray Observatory, combined with existing optical and infrared surveys, produce a catalog of 441 probable pre-main sequence members of the region. The stellar spatial distribution has two components: most stars reside in a rich, compact, elliptical cluster, but a minority reside within a molecular filament several parsecs long that straddles the cluster. The filament has active distributed star formation with dozens of unclustered protostars. The cluster pre-main sequence population is $leq 0.8$ Myr old and deeply embedded; its most massive member is extremely young producing an ultracompact H II region. The cluster total population deduced from the X-ray luminosity function is surprisingly rich, twice that of the Orion Nebula Cluster. The cluster core is remarkably dense where strong N-body interactions should be occurring; its Initial Mass Function may be deficient in massive stars. We infer that IRAS 09002-4732 is a rare case where a rich cluster is forming today in a molecular filament, consistent with astrophysical models of cluster formation in clouds that involve the hierarchical formation and merging of groups in molecular filaments.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا