Do you want to publish a course? Click here

YSOVAR: mid-infrared variability of young stellar objects and their disks in the cluster IRAS 20050+2720

175   0   0.0 ( 0 )
 Added by Katja Poppenhaeger
 Publication date 2015
  fields Physics
and research's language is English




Ask ChatGPT about the research

We present a time-variability study of young stellar objects in the cluster IRAS 20050+2720, performed at 3.6 and 4.5 micron with the Spitzer Space Telescope; this study is part of the Young Stellar Object VARiability project (YSOVAR). We have collected light curves for 181 cluster members over 40 days. We find a high variability fraction among embedded cluster members of ca. 70%, whereas young stars without a detectable disk display variability less often (in ca. 50% of the cases) and with lower amplitudes. We detect periodic variability for 33 sources with periods primarily in the range of 2-6 days. Practically all embedded periodic sources display additional variability on top of their periodicity. Furthermore, we analyze the slopes of the tracks that our sources span in the color-magnitude diagram (CMD). We find that sources with long variability time scales tend to display CMD slopes that are at least partially influenced by accretion processes, while sources with short variability time scales tend to display extinction-dominated slopes. We find a tentative trend of X-ray detected cluster members to vary on longer time scales than the X-ray undetected members.



rate research

Read More

IRAS 20050+2720 is young star forming region at a distance of 700 pc without apparent high mass stars. We present results of our multiwavelength study of IRAS 20050+2720 which includes observations by Chandra and Spitzer, and 2MASS and UBVRI photometry. In total, about 300 YSOs in different evolutionary stages are found. We characterize the distribution of young stellar objects (YSOs) in this region using a minimum spanning tree (MST) analysis. We newly identify a second cluster core, which consists mostly of class II objects, about 10 arcmin from the center of the cloud. YSOs of earlier evolutionary stages are more clustered than more evolved objects. The X-ray luminosity function (XLF) of IRAS 20050+2720 is roughly lognormal, but steeper than the XLF of the more massive Orion nebula complex. IRAS 20050+2720 shows a lower N_H/A_K ratio compared with the diffuse ISM.
171 - L. M. Rebull 2014
The YSOVAR (Young Stellar Object VARiability) Spitzer Space Telescope observing program obtained the first extensive mid-infrared (3.6 & 4.5 um) time-series photometry of the Orion Nebula Cluster plus smaller footprints in eleven other star-forming cores (AFGL490, NGC1333, MonR2, GGD 12-15, NGC2264, L1688, Serpens Main, Serpens South, IRAS 20050+2720, IC1396A, and Ceph C). There are ~29,000 unique objects with light curves in either or both IRAC channels in the YSOVAR data set. We present the data collection and reduction for the Spitzer and ancillary data, and define the standard sample on which we calculate statistics, consisting of fast cadence data, with epochs about twice per day for ~40d. We also define a standard sample of members, consisting of all the IR-selected members and X-ray selected members. We characterize the standard sample in terms of other properties, such as spectral energy distribution shape. We use three mechanisms to identify variables in the fast cadence data--the Stetson index, a chi^2 fit to a flat light curve, and significant periodicity. We also identified variables on the longest timescales possible of ~6 years, by comparing measurements taken early in the Spitzer mission with the mean from our YSOVAR campaign. The fraction of members in each cluster that are variable on these longest timescales is a function of the ratio of Class I/total members in each cluster, such that clusters with a higher fraction of Class I objects also have a higher fraction of long-term variables. For objects with a YSOVAR-determined period and a [3.6]-[8] color, we find that a star with a longer period is more likely than those with shorter periods to have an IR excess. We do not find any evidence for variability that causes [3.6]-[4.5] excesses to appear or vanish within our data; out of members and field objects combined, at most 0.02% may have transient IR excesses.
Optical and near-infrared variability is a well-known property of young stellar objects. However, a growing number of recent studies claim that a considerable fraction of them also exhibit mid-infrared flux changes. With the aim of studying and interpreting variability on a decadal timescale, here we present a mid-infrared spectral atlas containing observations of 68 low- and intermediate mass young stellar objects. The atlas consists of 2.5-11.6 um low-resolution spectra obtained with the ISOPHOT-S instrument on-board the Infrared Space Observatory (ISO) between 1996 and 1998, as well as 5.2-14.5 um low-resolution spectra obtained with the IRS instrument on-board the Spitzer Space Telescope between 2004 and 2007. The observations were retrieved from the ISO and Spitzer archives and were post-processed interactively by our own routines. For those 47 objects where multi-epoch spectra were available, we analyze mid-infrared spectral variability on annual and/or decadal timescales. We identify 37 variable candidate sources. Many stars show wavelength-independent flux changes, possibly due to variable accretion rate. In several systems, all exhibiting 10 um silicate emission, the variability of the 6-8 um continuum and the silicate feature exhibit different amplitudes. A possible explanation is variable shadowing of the silicate emitting region by an inner disk structure of changing height or extra silicate emission from dust clouds in the disk atmosphere. Our results suggest that mid-infrared variability, in particular the wavelength-dependent changes, are more ubiquitous than was known before. Interpreting this variability is a new possibility to explore the structure of the disk and its dynamical processes.
As part of the Young Stellar Object VARiability (YSOVAR) program, we monitored NGC 1333 for ~35 days at 3.6 and 4.5 um using the Spitzer Space Telescope. We report here on the mid-infrared variability of the point sources in the ~10x~20arcmin area centered on 03:29:06, +31:19:30 (J2000). Out of 701 light curves in either channel, we find 78 variables over the YSOVAR campaign. About half of the members are variable. The variable fraction for the most embedded SEDs (Class I, flat) is higher than that for less embedded SEDs (Class II), which is in turn higher than the star-like SEDs (Class III). A few objects have amplitudes (10-90th percentile brightness) in [3.6] or [4.5]>0.2 mag; a more typical amplitude is 0.1-0.15 mag. The largest color change is >0.2 mag. There are 24 periodic objects, with 40% of them being flat SED class. This may mean that the periodic signal is primarily from the disk, not the photosphere, in those cases. We find 9 variables likely to be dippers, where texture in the disk occults the central star, and 11 likely to be bursters, where accretion instabilities create brightness bursts. There are 39 objects that have significant trends in [3.6]-[4.5] color over the campaign, about evenly divided between redder-when-fainter (consistent with extinction variations) and bluer-when-fainter. About a third of the 17 Class 0 and/or jet-driving sources from the literature are variable over the YSOVAR campaign, and a larger fraction (~half) are variable between the YSOVAR campaign and the cryogenic-era Spitzer observations (6-7 years), perhaps because it takes time for the envelope to respond to changes in the central source. The NGC 1333 brown dwarfs do not stand out from the stellar light curves in any way except there is a much larger fraction of periodic objects (~60% of variable brown dwarfs are periodic, compared to ~30% of the variables overall).
150 - B. Stelzer 2015
This article represents a short review of the variability characteristics of young stellar objects. Variability is a key property of young stars. Two major origins may be distinguished: a scaled-up version of the magnetic activity seen on main-sequence stars and various processes related to circumstellar disks, accretion and outflows.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا