Do you want to publish a course? Click here

Current induced domain wall dynamics in the presence of a transverse magnetic field in out-of-plane magnetized materials

111   0   0.0 ( 0 )
 Added by Olivier Boulle
 Publication date 2012
  fields Physics
and research's language is English




Ask ChatGPT about the research

An analytical model was developped to describe the current induced DW dynamics of a Bloch DW in the presence of an external transverse magnetic field. The model takes into account the DW deformation and the magnetization tilting in the domain. The model is compared to the results of micromagnetic simulation and an excellent agreement is obtained. In the steady state regime, the model shows that the domain tilting does not change the DW mobility. An external or current induced transverse magnetic field such as the Oersted or Rashba field can prevent the Walker breakdown leading to a higher domain wall velocity.



rate research

Read More

We show that the Dzyaloshinskii-Moriya interaction (DMI) can lead to a tilting of the domain wall (DW) surface in perpendicularly magnetized magnetic nanotracks when DW dynamics is driven by an easy axis magnetic field or a spin polarized current. The DW tilting affects the DW dynamics for large DMI and the tilting relaxation time can be very large as it scales with the square of the track width. The results are well explained by an analytical model based on a Lagrangian approach where the DMI and the DW tilting are included. We propose a simple way to estimate the DMI in a magnetic multilayers by measuring the dependence of the DW tilt angle on a transverse static magnetic field. Our results shed light on the current induced DW tilting observed recently in Co/Ni multilayers with inversion asymmetry, and further support the presence of DMI in these systems.
Current induced domain wall (DW) motion in perpendicularly magnetized nanostripes in the presence of spin orbit torques is studied. We show using micromagnetic simulations that the direction of the current induced DW motion and the associated DW velocity depend on the relative values of the field like torque (FLT) and the Slonczewski like torques (SLT). The results are well explained by a collective coordinate model which is used to draw a phase diagram of the DW dynamics as a function of the FLT and the SLT. We show that a large increase in the DW velocity can be reached by a proper tuning of both torques.
We report on reversible electric-field-driven magnetic domain wall motion in a Cu/Ni multilayer on a ferroelectric BaTiO$_3$ substrate. In our heterostructure, strain-coupling to ferroelastic domains with in-plane and perpendicular polarization in the BaTiO$_3$ substrate causes the formation of domains with perpendicular and in-plane magnetic anisotropy, respectively, in the Cu/Ni multilayer. Walls that separate magnetic domains are elastically pinned onto ferroelectric domain walls. Using magneto-optical Kerr effect microscopy, we demonstrate that out-of-plane electric field pulses across the BaTiO$_3$ substrate move the magnetic and ferroelectric domain walls in unison. Our experiments indicate an exponential increase of domain wall velocity with electric field strength and opposite domain wall motion for positive and negative field pulses. Magnetic fields do not affect the velocity of magnetic domain walls, but independently tailor their internal spin structure, causing a change in domain wall dynamics at high velocities.
Domain-wall (DW) motion in magnetic nanostrips is intensively studied, in particular because of the possible applications in data storage. In this work, we will investigate a novel method of DW motion using magnetic field pulses, with the precession torque as the driving mechanism. We use a one dimensional (1D) model to show that it is possible to drive DWs in out-of-plane materials using the precession torque, and we identify the key parameters that influence this motion. Because the DW moves back to its initial position at the end of the field pulse, thereby severely complicating direct detection of the DW motion, depinning experiments are used to indirectly observe the effect of the precession torque. The 1D model is extended to include an energy landscape in order to predict the influence of the precession torque in the depinning experiments. Although preliminary experiments did not yet show an effect of the precession torque, our calculations indicate that depinning experiments can be used to demonstrate this novel method of DW motion in out-of-plane materials, which even allows for coherent motion of multiple domains when the Dzyaloshinskii-Moriya interaction is taken into account.
Domain-wall magnetoresistance and low-frequency noise have been studied in epitaxial antiferromagnetically-coupled [Fe/Cr(001)]_10 multilayers and ferromagnetic Co line structures as a function of DC current intensity. In [Fe/Cr(001)]_10 multilayers a transition from excess to suppressed domain-wall induced 1/f noise above current densities of j_c ~ 2*10^5 A/cm^2 has been observed. In ferromagnetic Co line structures the domain wall related noise remains qualitatively unchanged up to current densities exceeding 10^6A/cm^2. Theoretical estimates of the critical current density for a synthetic Fe/Cr antiferromagnet suggest that this effect may be attributed to current-induced domain-wall motion that occurs via spin transfer torques.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا