Do you want to publish a course? Click here

Spectral breaks as a signature of cosmic ray induced turbulence in the Galaxy

130   0   0.0 ( 0 )
 Publication date 2012
  fields Physics
and research's language is English




Ask ChatGPT about the research

We show that the complex shape of the cosmic ray (CR) spectrum, as recently measured by PAMELA and inferred from Fermi-LAT gamma-ray observations of molecular clouds in the Gould belt, can be naturally understood in terms of basic plasma astrophysics phenomena. A break from a harder to a softer spectrum at blue rigidity Rsimeq 10 GV follows from a transition from transport dominated by advection of particles with Alfven waves to a regime where diffusion in the turbulence generated by the same CRs is dominant. A second break at Rsimeq 200 GV happens when the diffusive propagation is no longer determined by the self-generated turbulence, but rather by the cascading of externally generated turbulence (for instance due to supernova (SN) bubbles) from large spatial scales to smaller scales where CRs can resonate. Implications of this scenario for the cosmic ray spectrum, grammage and anisotropy are discussed.



rate research

Read More

The long-lasting tension between the observed spectra of gamma ray bursts (GRBs) and the predicted synchrotron emission spectrum might be solved if electrons do not completely cool. Evidence for incomplete cooling was recently found in Swift GRBs with prompt observations down to 0.1 keV and in one bright Fermi burst, GRB 160625B. Here we systematically search for evidence of incomplete cooling in the spectra of the ten brightest short and long GRBs observed by Fermi. We find that in 8/10 long GRBs there is compelling evidence of a low energy break (below the peak energy) and good agreement with the photon indices of the synchrotron spectrum (respectively -2/3 and -3/2 below the break and between the break and the peak energy). Interestingly, none of the ten short GRBs analysed shows a break but the low energy spectral slope is consistent with -2/3. In a standard scenario, these results imply a very low magnetic field in the emission region (B ~ 10 G in the comoving frame), at odd with expectations.
114 - Pierre Brun , Denis Wouters 2013
G. Galanti and M .Roncadelli recently made public some comments on the article by D. Wouters and P. Brun about irregularities induced by photon mixing to axion-like particles in astrophysical media [Phys. Rev. D86, 043005 (2012)]. They claim in particular to have found some mistakes in the article. This note is a response to their comments, we refute their arguments and show that the results presented in the article are correct. It turns out most of the misunderstandings come from the definition of the beam initial state, some clarifications about which are given here.
Current theories predict relativistic hadronic particle populations in clusters of galaxies in addition to the already observed relativistic leptons. In these scenarios hadronic interactions give rise to neutral pions which decay into $gamma$ rays, that are potentially observable with the Large Area Telescope (LAT) on board the Fermi space telescope. We present a joint likelihood analysis searching for spatially extended $gamma$-ray emission at the locations of 50 galaxy clusters in 4 years of Fermi-LAT data under the assumption of the universal cosmic-ray model proposed by Pinzke & Pfrommer (2010). We find an excess at a significance of $2.7sigma$ which upon closer inspection is however correlated to individual excess emission towards three galaxy clusters: Abell 400, Abell 1367 and Abell 3112. We discuss these cases in detail and conservatively attribute the emission to unmodeled background (for example, radio galaxies within the clusters). Through the combined analysis of 50 clusters we exclude hadronic injection efficiencies in simple hadronic models above 21% and establish limits on the cosmic-ray to thermal pressure ratio within the virial radius, $R_{200}$, to be below 1.2-1.4% depending on the morphological classification. In addition we derive new limits on the $gamma$-ray flux from individual clusters in our sample.
59 - Martin Pohl 2021
Cosmic-ray acceleration at non-relativistic shocks relies on scattering by turbulence that the cosmic rays drive upstream of the shock. We explore the rate of energy transfer from cosmic rays to non-resonant Bell modes and the spectral softening it implies. Accounting for the finite time available for turbulence driving at supernova-remnant shocks yields a smaller spectral impact than found earlier with steady-state considerations. Generally, for diffusion scaling with the Bohm rate by a factor $eta$, the change in spectral index is at most $eta$ divided by the Alfvenic Mach number of the thermal sub-shock. For $M_mathrm{A}lesssim 50$ it is well below this limit. Only for very fast shocks and very efficient cosmic-ray acceleration the change in spectral index may reach $0.1$. For standard SNR parameters it is negligible. Independent confirmation is derived by considering the synchrotron energy losses of electrons: if intense nonthermal multi-keV emission is produced, the energy loss, and hence the spectral steepening, is very small for hadronic cosmic rays that produce TeV-band gamma-ray emission.
Cosmic-ray transport in astrophysical environments is often dominated by the diffusion of particles in a magnetic field composed of both a turbulent and a mean component. This process needs to be understood in order to properly model cosmic-ray signatures. One of the most important aspects in the modeling of cosmic-ray diffusion is that fully resonant scattering, the most effective such process, is only possible if the wave spectrum covers the entire range of propagation angles. By taking the wave spectrum boundaries into account, we quantify cosmic-ray diffusion parallel and perpendicular to the guide field direction at turbulence levels above 5% of the total magnetic field. We apply our results of the parallel and perpendicular diffusion coefficient to the Milky Way. We show that simple purely diffusive transport is in conflict with observations of the inner Galaxy, but that just by taking a Galactic wind into account, data can be matched in the central 5 kpc zone. Further comparison shows that the outer Galaxy at $>5$ kpc, on the other hand, should be dominated by perpendicular diffusion, likely changing to parallel diffusion at the outermost radii of the Milky Way.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا