No Arabic abstract
G. Galanti and M .Roncadelli recently made public some comments on the article by D. Wouters and P. Brun about irregularities induced by photon mixing to axion-like particles in astrophysical media [Phys. Rev. D86, 043005 (2012)]. They claim in particular to have found some mistakes in the article. This note is a response to their comments, we refute their arguments and show that the results presented in the article are correct. It turns out most of the misunderstandings come from the definition of the beam initial state, some clarifications about which are given here.
Axionlike particles (ALPs) are a common prediction of theories beyond the Standard Model of particle physics that could explain the entirety of the cold dark matter. These particles could be detected through their mixing with photons in external electromagnetic fields. Here, we provide a short review over ALP searches that utilize astrophysical $gamma$-ray observations. We summarize current bounds as well as future sensitivities and discuss the possibility that ALPs alter the $gamma$-ray opacity of the Universe.
Axionlike particles (ALPs) are hypothetical light (sub-eV) bosons predicted in some extensions of the Standard Model of particle physics. In astrophysical environments comprising high-energy gamma rays and turbulent magnetic fields, the existence of ALPs can modify the energy spectrum of the gamma rays for a sufficiently large coupling between ALPs and photons. This modification would take the form of an irregular behavior of the energy spectrum in a limited energy range. Data from the H.E.S.S. observations of the distant BL Lac object PKS 2155-304 (z = 0.116) are used to derive upper limits at the 95% C.L. on the strength of the ALP coupling to photons, $g_{gamma a} < 2.1times 10^{-11}$ GeV$^{-1}$ for an ALP mass between 15 neV and 60 neV. The results depend on assumptions on the magnetic field around the source, which are chosen conservatively. The derived constraints apply to both light pseudoscalar and scalar bosons that couple to the electromagnetic field.
We show that the complex shape of the cosmic ray (CR) spectrum, as recently measured by PAMELA and inferred from Fermi-LAT gamma-ray observations of molecular clouds in the Gould belt, can be naturally understood in terms of basic plasma astrophysics phenomena. A break from a harder to a softer spectrum at blue rigidity Rsimeq 10 GV follows from a transition from transport dominated by advection of particles with Alfven waves to a regime where diffusion in the turbulence generated by the same CRs is dominant. A second break at Rsimeq 200 GV happens when the diffusive propagation is no longer determined by the self-generated turbulence, but rather by the cascading of externally generated turbulence (for instance due to supernova (SN) bubbles) from large spatial scales to smaller scales where CRs can resonate. Implications of this scenario for the cosmic ray spectrum, grammage and anisotropy are discussed.
We report detection of a line-like feature in the $gamma$-ray spectrum of the blazar B0516$-$621, for which the data obtained with the Large Area Telescope onboard {it Fermi Gamma-Ray Space Telescope (Fermi)} are analyzed. The feature is at $sim$7,GeV and different analyses are conducted to check its real presence. We determine that it has a significance of 2.5--3.0$sigma$, and cautiously note the presence of possible systematics in the data which could reduce the significance. This putative feature is too narrow to be explained with radiation processes generally considered for jet emission of blazars. Instead, it could be a signal due to the oscillations between photons and axion-like particles (ALPs) in the sources jet. We investigate this possibility by fitting the spectrum with the photon-ALP oscillation model, and find that the parameter space of ALP mass $m_aleq 10^{-8}$,eV and the coupling constant (between photons and ALPs) $g_{agamma}$=1.16--1.48$times 10^{-10}$,GeV$^{-1}$ can provide a fit to the line-like feature, while the magnetic field at the emission site of $gamma$-rays is fixed at 0.7,G. The ranges for $m_a$ and $g_{agamma}$ are in tension with those previously obtained from several experiments or methods, but on the other hand in line with some of the others. This spectral-feature case and its possible indication for ALP existence could be checked from similar studies of other blazar systems and also suggest a direction of effort for building future high-energy facilities that would have high sensitivities and spectral resolutions for searching for similar features.
Information on the spectral shape of prompt emission in gamma-ray bursts (GRB) is mostly available only at energies $gtrsim10$ keV, where the main instruments for GRB detection are sensitive. The origin of this emission is still very uncertain because of the apparent inconsistency with synchrotron radiation, which is the most obvious candidate, and the resulting need for considering less straightforward scenarios. The inclusion of data down to soft X-rays ($sim$ 0.5 keV), which are available only in a small fraction of GRBs, has firmly established the common presence of a spectral break in the low-energy part of prompt spectra, and the consistency of the overall spectral shape with synchrotron radiation in the moderately fast-cooling regime, the low-energy break being identified with the cooling frequency. In this work we further extend the range of investigation down to the optical band. In particular, we test the synchrotron interpretation by directly fitting a theoretically derived synchrotron spectrum and making use of optical to gamma-ray data. Secondly, we test an alternative model that considers the presence of a black-body component at $sim$keV energies, in addition to a non-thermal component that is responsible for the emission at the spectral peak (100 keV-1 MeV). We find that synchrotron radiation provides a good description of the broadband data, while models composed of a thermal and a non-thermal component require the introduction of a low-energy break in the non-thermal component in order to be consistent with optical observations. Motivated by the good quality of the synchrotron fits, we explore the physical parameter space of the emitting region. In a basic prompt emission scenario we find quite contrived solutions for the magnetic field strength (5 G $<B^prime<40$ G) and for the location of the region where the radiation is produced ($R_gamma>10^{16}$ cm).