Do you want to publish a course? Click here

Evaluation of the Beam Coupling Impedance of New Beam Screen Designs for the LHC Injection Kicker Magnets

275   0   0.0 ( 0 )
 Added by Hugo Day
 Publication date 2012
  fields Physics
and research's language is English




Ask ChatGPT about the research

During the 2011 run of the LHC there was a significant measured temperature increase in the LHC Injection Kicker Magnets (MKI) during operation with 50ns bunch spacing. This was due to increased beam-induced heating of the magnet due to beam impedance. Due to concerns about future heating with the increased total intensity to nominal and ultimate luminosities a review of the impedance reduction techniques within the magnet was required. A number of new beam screen designs are proposed and their impedance evaluated. Heating estimates are also given with a particular attention paid to future intensity upgrades to ultimate parameters.



rate research

Read More

As part of an upgrade to the LHC collimation system, 8 TCTP and 1 TCSG collimators are proposed to replace existing collimators in the collimation system. In an effort to review all equipment placed in the accelerator complex for potential side effects due to collective effects and beam-equipment interactions, beam coupling impedance simulations are carried out in both the time-domain and frequency-domain of the full TCTP design. Particular attention is paid to trapped modes that may induce beam instabilities and beam-induced heating due to cavity modes of the device.
Each stage of an accelerator system has a limited dynamic range and therefore a chain of stages is required to reach high energy. A combination of septa and kicker magnets is frequently used to inject and extract beam from each stage. The kicker magnets typically produce rectangular field pulses with fast rise- and/or fall-times, however, the field strength is relatively low. To compensate for their relatively low field strength, the kicker magnets are generally combined with electromagnetic septa. The septa provide relatively strong field strength but are either DC or slow pulsed. This paper discusses injection and extraction systems with particular emphasis on the hardware required for the kicker magnet.
248 - C. M. Bhat 2015
A new beam injection scheme is proposed for the Fermilab Booster to increase beam brightness. The beam is injected on the deceleration part of the sinusoidal magnetic ramp and capture is started immediately after the injection. During the entire capture process we impose Pdot=0 in a changing B field. Beam dynamics simulations clearly show that this method is very efficient with no longitudinal beam emittance dilution and no beam loss. As a consequence of preserved emittance, the required RF power on a typical Booster cycle can be reduced by ~30% as compared with the scheme in current operation. Further, we also propose snap bunch rotation at extraction to reduce dP/P of the beam to improve the slip-stacking efficiency in MI/RR.
In the years 2009-2013 the Large Hadron Collider (LHC) has been operated with the top beam energies of 3.5 TeV and 4 TeV per proton (from 2012) instead of the nominal 7 TeV. The currents in the superconducting magnets were reduced accordingly. To date only seventeen beam-induced quenches have occurred; eight of them during specially designed quench tests, the others during injection. There has not been a single beam- induced quench during normal collider operation with stored beam. The conditions, however, are expected to become much more challenging after the long LHC shutdown. The magnets will be operating at near nominal currents, and in the presence of high energy and high intensity beams with a stored energy of up to 362 MJ per beam. In this paper we summarize our efforts to understand the quench levels of LHC superconducting magnets. We describe beam-loss events and dedicated experiments with beam, as well as the simulation methods used to reproduce the observable signals. The simulated energy deposition in the coils is compared to the quench levels predicted by electro-thermal models, thus allowing to validate and improve the models which are used to set beam-dump thresholds on beam-loss monitors for Run 2.
121 - W. Herr , X. Buffat , R. Calaga 2014
We report on the experience with long-range beam--beam effects in the LHC, in dedicated studies as well as the experience from operation. Where possible, we compare the observations with the expectations.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا