Do you want to publish a course? Click here

Long Range Beam-beam Effects in the LHC

113   0   0.0 ( 0 )
 Added by Werner Herr F
 Publication date 2014
  fields Physics
and research's language is English




Ask ChatGPT about the research

We report on the experience with long-range beam--beam effects in the LHC, in dedicated studies as well as the experience from operation. Where possible, we compare the observations with the expectations.



rate research

Read More

124 - Y. Zhang 2014
We first introduce the design parameters of the Beijing Electron-Positron Collider II (BEPCII) and the simulation study of beam-beam effects during the design process of the machine. The main advances since 2007 are briefly introduced and reviewed. The longitudinal feedback system was installed to suppress the coupled bunch instability in January 2010. The horizontal tune decreased from 6.53 to 6.508 during the course of data taken in December, 2010. The saturation of the beam-beam parameter was found in 2011, and the vacuum chambers and magnets near the north crossing point were moved 15 cm in order to mitigate the long range beam-beam interaction. At the beginning of 2013, the beam-beam parameter achieved 0.04 with the new lower $alpha_{p}$ lattice and the peak luminosity achieved 7 x 10$^{32}$ cm$^{-2}$ s$^{-1}$.
144 - K. Cornelis 2014
During the proton-anti proton collider run several experiments were carried out in order to understand the effect of the beam-beam interaction on backgrounds and lifetimes. In this talk a selection of these experiments will be presented. From these experiments, the importance of relative beam sizes and tune ripple could be demonstrated.
102 - Gennady Stupakov 2019
The fast beam-ion instability (FII) is caused by the interaction of an electron bunch train with the residual gas ions. The ion oscillations in the potential well of the electron beam have an inherent frequency spread due to the nonlinear profile of the potential. However, this frequency spread and associated with it Landau damping typically is not strong enough to suppress the instability. In this work, we develop a model of FII which takes into account the frequency spread in the electron beam due to the beam-beam interaction in an electron-ion collider. We show that with a large enough beam-beam parameter the fast ion instability can be suppressed. We estimate the strength of this effect for the parameters of the eRHIC electron-ion collider.
As part of an upgrade to the LHC collimation system, 8 TCTP and 1 TCSG collimators are proposed to replace existing collimators in the collimation system. In an effort to review all equipment placed in the accelerator complex for potential side effects due to collective effects and beam-equipment interactions, beam coupling impedance simulations are carried out in both the time-domain and frequency-domain of the full TCTP design. Particular attention is paid to trapped modes that may induce beam instabilities and beam-induced heating due to cavity modes of the device.
During the 2011 run of the LHC there was a significant measured temperature increase in the LHC Injection Kicker Magnets (MKI) during operation with 50ns bunch spacing. This was due to increased beam-induced heating of the magnet due to beam impedance. Due to concerns about future heating with the increased total intensity to nominal and ultimate luminosities a review of the impedance reduction techniques within the magnet was required. A number of new beam screen designs are proposed and their impedance evaluated. Heating estimates are also given with a particular attention paid to future intensity upgrades to ultimate parameters.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا