Do you want to publish a course? Click here

The influence of rotation on optical emission profiles of O stars

82   0   0.0 ( 0 )
 Added by D. John Hillier
 Publication date 2012
  fields Physics
and research's language is English




Ask ChatGPT about the research

We study the formation of photospheric emission lines in O stars and show that the rectangular profiles, sometimes double peaked, that are observed for some stars are a direct consequence of rotation, and it is unnecessary to invoke an enhanced density structure in the equatorial regions. Emission lines, such as N IV 4058 and the N III 4634-4640-4642 multiplet, exhibit non-standard limb darkening laws. The lines can be in absorption for rays striking the center of the star and in emission for rays near the limb. Weak features in the flux spectrum do not necessarily indicate an intrinsically weak feature -- instead the feature can be weak because of cancellation between absorption in core rays and emission from rays near the limb. Rotation also modifies line profiles of wind diagnostics such as He II 4686 and Halpha and should not be neglected when inferring the actual stratification, level and nature of wind structures.



rate research

Read More

132 - A. Oetjens 2020
The method of gyrochronology relates the age of its star to its rotation period. However, recent evidence of deviations from gyrochronology relations was reported in the literature. Here, we study the influence of tidal interaction between a star and its companion on the rotation velocity of the star, in order to explain peculiar stellar rotation velocities. The interaction of a star and its planet is followed using a comprehensive numerical framework that combines tidal friction, magnetic braking, planet migration, and detailed stellar evolution models from the GARSTEC grid. We focus on close-in companions from 1 to 20 M$_{Jup}$ orbiting low-mass, 0.8 and 1 M$_{odot}$, main-sequence stars with a broad metallicity range from [Fe/H] = -1 to solar. Our simulations suggest that the dynamical interaction between a star and its companion can have different outcomes, which depend on the initial semi-major axis and the mass of the planet, as well as the mass and metallicity of its host star. In most cases, especially in the case of planet engulfment, we find a catastrophic increase in stellar rotation velocity from 1 kms$^{-1}$ to over 40 kms$^{-1}$, while the star is still on the main-sequence. The main prediction of our model is that low-mass main-sequence stars with abnormal rotation velocities should be more common at low-metallicity, as lower [Fe/H] favours faster planet engulfment, provided occurrence rate of close in massive planets is similar at all metallicities. Our scenario explains peculiar rotation velocities of low-mass main-sequence stars by the tidal interaction between the star and its companion. Current observational samples are too small and incomplete, and thus do not allow us to test our model.
Supermassive stars born from pristine gas in atomically-cooled haloes are thought to be the progenitors of supermassive black holes at high redshifts. However, the way they accrete their mass is still an unsolved problem. In particular, for accretion to proceed, a large amount of angular momentum has to be extracted from the collapsing gas. Here, we investigate the constraints stellar evolution imposes on this angular momentum problem. We present an evolution model of a supermassive Population III star including simultaneously accretion and rotation. We find that, for supermassive stars to form by accretion, the accreted angular momentum has to be about 1% of the Keplerian angular momentum. This tight constraint comes from the $OmegaGamma$-limit, at which the combination of radiation pressure and centrifugal force cancels gravity. It implies that supermassive stars are slow rotators, with a surface velocity less than 10-20% of their first critical velocity, at which the centrifugal force alone cancels gravity. At such low velocities, the deformation of the star due to rotation is negligible.
142 - K. Poppenhaeger , S.J. Wolk 2014
The magnetic activity of planet-hosting stars is an important factor to estimate the atmospheric stability of close-in exoplanets and the age of their host stars. It has long been speculated that close-in exoplanets can influence the stellar activity level. However, testing for tidal or magnetic interaction effects in samples of planet-hosting stars is difficult because stellar activity hinders exoplanet detection, so that stellar samples with detected exoplanets show a bias towards low activity for small exoplanets. We aim to test if exoplanets in close orbits influence the stellar rotation and magnetic activity of their host stars, and have developed a novel approach to test for such systematic activity enhancements. We use wide (several 100 AU) binary systems in which one of the stellar components is known to have an exoplanet, while the second stellar component does not have a detected planet and therefore acts as a negative control. We use the stellar coronal X-ray emission as an observational proxy for magnetic activity, and analyze observations performed with Chandra and XMM-Newton. We find that in two systems for which strong tidal interaction can be expected the planet-hosting primary displays a much higher magnetic activity level than the planet-free secondary. In three systems for which weaker tidal interaction can be expected the activity levels of both stellar components are in agreement. Our observations indicate that the presence of Hot Jupiters may inhibit the spin-down of host stars with thick outer convective layers. Possible causes for such an effect include a transfer of angular momentum from the planetary orbit to the stellar rotation through tidal interaction, or differences during the early evolution of the system, where the host star may decouple from the protoplanetary disk early due to a gap opened by the forming Hot Jupiter.
By quantitatively fitting simple emission line profile models that include both atomic opacity and porosity to the Chandra X-ray spectrum of $zeta$ Pup, we are able to explore the trade-offs between reduced mass-loss rates and wind porosity. We find that reducing the mass-loss rate of $zeta$ Pup by roughly a factor of four, to 1.5 times 10^{-6} M_sun/yr, enables simple non-porous wind models to provide good fits to the data. If, on the other hand, we take the literature mass-loss rate of 6 times 10^{-6} M_sun/yr, then to produce X-ray line profiles that fit the data, extreme porosity lengths -- of $h_{infty} approx 3$ Rstar -- are required. Moreover, these porous models do not provide better fits to the data than the non-porous, low optical depth models. Additionally, such huge porosity lengths do not seem realistic in light of 2-D numerical simulations of the wind instability.
Observations of Sun-like stars over the last half-century have improved our understanding of how magnetic dynamos, like that responsible for the 11-year solar cycle, change with rotation, mass and age. Here we show for the first time how metallicity can affect a stellar dynamo. Using the most complete set of observations of a stellar cycle ever obtained for a Sun-like star, we show how the solar analog HD 173701 exhibits solar-like differential rotation and a 7.4-year activity cycle. While the duration of the cycle is comparable to that generated by the solar dynamo, the amplitude of the brightness variability is substantially stronger. The only significant difference between HD 173701 and the Sun is its metallicity, which is twice the solar value. Therefore, this provides a unique opportunity to study the effect of the higher metallicity on the dynamo acting in this star and to obtain a comprehensive understanding of the physical mechanisms responsible for the observed photometric variability. The observations can be explained by the higher metallicity of the star, which is predicted to foster a deeper outer convection zone and a higher facular contrast, resulting in stronger variability.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا