Do you want to publish a course? Click here

On the Rotation of Supermassive Stars

50   0   0.0 ( 0 )
 Added by Lionel Haemmerl\\'e
 Publication date 2017
  fields Physics
and research's language is English




Ask ChatGPT about the research

Supermassive stars born from pristine gas in atomically-cooled haloes are thought to be the progenitors of supermassive black holes at high redshifts. However, the way they accrete their mass is still an unsolved problem. In particular, for accretion to proceed, a large amount of angular momentum has to be extracted from the collapsing gas. Here, we investigate the constraints stellar evolution imposes on this angular momentum problem. We present an evolution model of a supermassive Population III star including simultaneously accretion and rotation. We find that, for supermassive stars to form by accretion, the accreted angular momentum has to be about 1% of the Keplerian angular momentum. This tight constraint comes from the $OmegaGamma$-limit, at which the combination of radiation pressure and centrifugal force cancels gravity. It implies that supermassive stars are slow rotators, with a surface velocity less than 10-20% of their first critical velocity, at which the centrifugal force alone cancels gravity. At such low velocities, the deformation of the star due to rotation is negligible.



rate research

Read More

Supermassive primordial stars are suspected to be the progenitors of the most massive quasars at z~6. Previous studies of such stars were either unable to resolve hydrodynamical timescales or considered stars in isolation, not in the extreme accretion flows in which they actually form. Therefore, they could not self-consistently predict their final masses at collapse, or those of the resulting supermassive black hole seeds, but rather invoked comparison to simple polytropic models. Here, we systematically examine the birth, evolution and collapse of accreting non-rotating supermassive stars under accretion rates of 0.01-10 solar masses per year, using the stellar evolution code KEPLER. Our approach includes post-Newtonian corrections to the stellar structure and an adaptive nuclear network, and can transition to following the hydrodynamic evolution of supermassive stars after they encounter the general relativistic instability. We find that this instability triggers the collapse of the star at masses of 150,000-330,000 solar masses for accretion rates of 0.1-10 solar masses per year, and that the final mass of the star scales roughly logarithmically with the rate. The structure of the star, and thus its stability against collapse, is sensitive to the treatment of convection, and the heat content of the outer accreted envelope. Comparison with other codes suggests differences here may lead to small deviations in the evolutionary state of the star as a function of time, that worsen with accretion rate. Since the general relativistic instability leads to the immediate death of these stars, our models place an upper limit on the masses of the first quasars at birth.
The formation of supermassive stars (SMSs) via rapid mass accretion and their direct collapse into black holes (BHs) is a promising pathway for sowing seeds of supermassive BHs in the early universe. We calculate the evolution of rapidly accreting SMSs by solving the stellar structure equations including nuclear burning as well as general relativistic (GR) effects up to the onset of the collapse. We find that such SMSs have less concentrated structure than fully-convective counterpart, which is often postulated for non-accreting ones. This effect stabilizes the stars against GR instability even above the classical upper mass limit $gtrsim 10^5~M_odot$ derived for the fully-convective stars. The accreting SMS begins to collapse at the higher mass with the higher accretion rate. The collapse occurs when the nuclear fuel is exhausted only for cases with $dot M lesssim 0.1~M_odot~{rm yr}^{-1}$. With $dot{M} simeq 0.3 - 1~M_odot~{rm yr}^{-1}$, the star becomes GR-unstable during the helium-burning stage at $M simeq 2 - 3.5~times 10^5~M_odot$. In an extreme case with $10~M_odot~{rm yr}^{-1}$, the star does not collapse until the mass reaches $simeq 8.0times 10^5~M_odot$, where it is still in the hydrogen-burning stage. We expect that BHs with roughly the same mass will be left behind after the collapse in all the cases.
Supermassive primordial stars forming in atomically-cooled halos at $z sim15-20$ are currently thought to be the progenitors of the earliest quasars in the Universe. In this picture, the star evolves under accretion rates of $0.1 - 1$ $M_odot$ yr$^{-1}$ until the general relativistic instability triggers its collapse to a black hole at masses of $sim10^5$ $M_odot$. However, the ability of the accretion flow to sustain such high rates depends crucially on the photospheric properties of the accreting star, because its ionising radiation could reduce or even halt accretion. Here we present new models of supermassive Population III protostars accreting at rates $0.001 - 10$ $M_odot$ yr$^{-1}$, computed with the GENEVA stellar evolution code including general relativistic corrections to the internal structure. We use the polytropic stability criterion to estimate the mass at which the collapse occurs, which has been shown to give a lower limit of the actual mass at collapse in recent hydrodynamic simulations. We find that at accretion rates higher than $0.001$ $M_odot$ yr$^{-1}$ the stars evolve as red, cool supergiants with surface temperatures below $10^4$ K towards masses $>10^5$ $M_odot$, and become blue and hot, with surface temperatures above $10^5$ K, only for rates $lesssim0.001$ $M_odot$ yr$^{-1}$. Compared to previous studies, our results extend the range of masses and accretion rates at which the ionising feedback remains weak, reinforcing the case for direct collapse as the origin of the first quasars.
The collapse of supermassive primordial stars in hot, atomically-cooled halos may have given birth to the first quasars at $z sim$ 15 - 20. Recent numerical simulations of these rapidly accreting stars reveal that they are cool, red hypergiants shrouded by dense envelopes of pristine atomically-cooled gas at 6,000 - 8,000 K, with luminosities $L$ $gtrsim$ 10$^{10}$ L$_{odot}$. Could such luminous but cool objects be detected as the first stage of quasar formation in future near infrared (NIR) surveys? We have now calculated the spectra of supermassive primordial stars in their birth envelopes with the Cloudy code. We find that some of these stars will be visible to JWST at $z lesssim$ 20 and that with modest gravitational lensing Euclid and WFIRST could detect them out to $z sim$ 10 - 12. Rather than obscuring the star, its accretion envelope enhances its visibility in the NIR today by reprocessing its short-wavelength flux into photons that are just redward of the Lyman limit in the rest frame of the star.
Depending on mass and rotational frequency, gravity compresses the matter in the core regions of neutron stars to densities that are several times higher than the density of ordinary atomic nuclei. At such huge densities atoms themselves collapse, and atomic nuclei are squeezed so tightly together that new particle states may appear and novel states of matter, foremost quark matter, may be created. This feature makes neutron stars superb astrophysical laboratories for a wide range of physical studies. And with observational data accumulating rapidly from both orbiting and ground based observatories spanning the spectrum from X-rays to radio wavelengths, there has never been a more exiting time than today to study neutron stars. The Hubble Space Telescope and X-ray satellites such as Chandra and XMM-Newton in particular have proven especially valuable. New astrophysical instruments such as the Five hundred meter Aperture Spherical Telescope (FAST), the square kilometer Array (skA), Fermi Gamma-ray Space Telescope (formerly GLAST), and possibly the International X-ray Observatory (now Advanced Telescope for High ENergy Astrophysics, ATHENA) promise the discovery of tens of thousands of new non-rotating and rotating neutron stars. The latter are referred to as pulsars. This paper provides a short overview of the impact of rotation on the structure and composition of neutron stars. Observational properties, which may help to shed light on the core composition of neutron stars--and, hence, the properties of ultra-dense matter--are discussed.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا