Do you want to publish a course? Click here

Magnetic field transport from disk to halo via the galactic chimney process in NGC 6946

288   0   0.0 ( 0 )
 Added by George Heald
 Publication date 2012
  fields Physics
and research's language is English
 Authors George Heald




Ask ChatGPT about the research

The interstellar medium (ISM) in galaxies is directly affected by the mass and energy outflows originating in regions of star formation. Magnetic fields are an essential ingredient of the ISM, but their connection to the gaseous medium and its evolution remains poorly understood. Here we present the detection of a gradient in Faraday rotation measure (RM), co-located with a hole in the neutral hydrogen (HI) distribution in the disk of the nearby spiral galaxy NGC 6946. The gas kinematics in the same location show evidence for infall of cold gas. The combined characteristics of this feature point to a substantial vertical displacement of the initially plane-parallel ordered magnetic field, driven by a localized star formation event. This reveals how the large-scale magnetic field pattern in galaxy disks is directly influenced by internal energetic phenomena. Conversely, magnetic fields are observed to be an important ingredient in disk-halo interactions, as predicted in MHD simulations. Turbulent magnetic fields at smaller spatial scales than the observed RM gradient will also be carried from the disk and provide a mechanism for the dynamo process to amplify the ordered magnetic field without quenching. We discuss the observational biases, and suggest that this is a common feature of star forming galaxies with active disk-halo flows.



rate research

Read More

Evidence has increasingly mounted in recent decades that outflows of matter and energy from the central parsecs of our Galaxy have shaped the observed structure of the Milky Way on a variety of larger scales. On scales of ~15 pc, the Galactic centre has bipolar lobes that can be seen in both X-rays and radio, indicating broadly collimated outflows from the centre, directed perpendicular to the Galactic plane. On far larger scales approaching the size of the Galaxy itself, gamma-ray observations have identified the so-called Fermi Bubble features, implying that our Galactic centre has, or has recently had, a period of active energy release leading to a production of relativistic particles that now populate huge cavities on both sides of the Galactic plane. The X-ray maps from the ROSAT all-sky survey show that the edges of these cavities close to the Galactic plane are bright in X-rays. At intermediate scales (~150 pc), radio astronomers have found the Galactic Centre Lobe, an apparent bubble of emission seen only at positive Galactic latitudes, but again indicative of energy injection from near the Galactic centre. Here we report the discovery of prominent X-ray structures on these intermediate (hundred-parsec) scales above and below the plane, which appear to connect the Galactic centre region to the Fermi bubbles. We propose that these newly-discovered structures, which we term the Galactic Centre Chimneys, constitute a channel through which energy and mass, injected by a quasi-continuous train of episodic events at the Galactic centre, are transported from the central parsecs to the base of the Fermi bubbles.
78 - S. Aniyan 2020
The mass-to-light ratio (M/L) is a key parameter in decomposing galactic rotation curves into contributions from the baryonic components and the dark halo of a galaxy. One direct observational method to determine the disc M/L is by calculating the surface mass density of the disc from the stellar vertical velocity dispersion and the scale height of the disc. Usually, the scale height is obtained from near-IR studies of edge-on galaxies and pertains to the older, kinematically hotter stars in the disc, while the vertical velocity dispersion of stars is measured in the optical band and refers to stars of all ages (up to ~10 Gyr) and velocity dispersions. This mismatch between the scale height and the velocity dispersion can lead to underestimates of the disc surface density and a misleading conclusion of the sub-maximality of galaxy discs. In this paper we present the study of the stellar velocity dispersion of the disc galaxy NGC 6946 using integrated star light and individual planetary nebulae as dynamical tracers. We demonstrate the presence of two kinematically distinct populations of tracers which contribute to the total stellar velocity dispersion. Thus, we are able to use the dispersion and the scale height of the same dynamical population to derive the surface mass density of the disc over a radial extent. We find the disc of NGC 6946 to be closer to maximal with the baryonic component contributing most of the radial gravitational field in the inner parts of the galaxy (Vmax(bar) = 0.76($pm$0.14)Vmax).
This compilation is the fourth data release from the $R$-Process Alliance (RPA) search for $r$-process-enhanced stars, and the second release based on snapshot high-resolution ($R sim 30,000$) spectra collected with the du Pont 2.5m Telescope. In this data release, we propose a new delineation between the $r$-I and $r$-II stellar classes at $mathrm{[Eu/Fe]} = +0.7$, instead of the empirically chosen $mathrm{[Eu/Fe]} = +1.0$ level previously in use, based on statistical tests of the complete set of RPA data released to date. We also statistically justify the minimum level of [Eu/Fe] for definition of the $r$-I stars, [Eu/Fe] $> +0.3$. Redefining the separation between $r$-I and $r$-II stars will aid in analysis of the possible progenitors of these two classes of stars and whether these signatures arise from separate astrophysical sources at all. Applying this redefinition to previous RPA data, the number of identified $r$-II and $r$-I stars changes to 51 and 121, respectively, from the initial set of data releases published thus far. In this data release, we identify 21 new $r$-II, 111 new $r$-I (plus three re-identified), and 7 new (plus one re-identified) limited-$r$ stars out of a total of 232 target stars, resulting in a total sample of 72 new $r$-II stars, 232 new $r$-I stars, and 42 new limited-$r$ stars identified by the RPA to date.
We characterize the dust in NGC628 and NGC6946, two nearby spiral galaxies in the KINGFISH sample. With data from 3.6um to 500um, dust models are strongly constrained. Using the Draine & Li (2007) dust model, (amorphous silicate and carbonaceous grains), for each pixel in each galaxy we estimate (1) dust mass surface density, (2) dust mass fraction contributed by polycyclic aromatic hydrocarbons (PAH)s, (3) distribution of starlight intensities heating the dust, (4) total infrared (IR) luminosity emitted by the dust, and (5) IR luminosity originating in regions with high starlight intensity. We obtain maps for the dust properties, which trace the spiral structure of the galaxies. The dust models successfully reproduce the observed global and resolved spectral energy distributions (SEDs). The overall dust/H mass ratio is estimated to be 0.0082+/-0.0017 for NGC628, and 0.0063+/-0.0009 for NGC6946, consistent with what is expected for galaxies of near-solar metallicity. Our derived dust masses are larger (by up to a factor 3) than estimates based on single-temperature modified blackbody fits. We show that the SED fits are significantly improved if the starlight intensity distribution includes a (single intensity) delta function component. We find no evidence for significant masses of cold dust T<12K. Discrepancies between PACS and MIPS photometry in both low and high surface brightness areas result in large uncertainties when the modeling is done at PACS resolutions, in which case SPIRE, MIPS70 and MIPS160 data cannot be used. We recommend against attempting to model dust at the angular resolution of PACS.
This paper presents the detailed abundances and r-process classifications of 126 newly identified metal-poor stars as part of an ongoing collaboration, the R-Process Alliance. The stars were identified as metal-poor candidates from the RAdial Velocity Experiment (RAVE) and were followed-up at high spectral resolution (R~31,500) with the 3.5~m telescope at Apache Point Observatory. The atmospheric parameters were determined spectroscopically from Fe I lines, taking into account <3D> non-LTE corrections and using differential abundances with respect to a set of standards. Of the 126 new stars, 124 have [Fe/H]<-1.5, 105 have [Fe/H]<-2.0, and 4 have [Fe/H]<-3.0. Nine new carbon-enhanced metal-poor stars have been discovered, 3 of which are enhanced in r-process elements. Abundances of neutron-capture elements reveal 60 new r-I stars (with +0.3<=[Eu/Fe]<=+1.0 and [Ba/Eu]<0) and 4 new r-II stars (with [Eu/Fe]>+1.0). Nineteen stars are found to exhibit a `limited-r signature ([Sr/Ba]>+0.5, [Ba/Eu]<0). For the r-II stars, the second- and third-peak main r-process patterns are consistent with the r-process signature in other metal-poor stars and the Sun. The abundances of the light, alpha, and Fe-peak elements match those of typical Milky Way halo stars, except for one r-I star which has high Na and low Mg, characteristic of globular cluster stars. Parallaxes and proper motions from the second Gaia data release yield UVW space velocities for these stars which are consistent with membership in the Milky Way halo. Intriguingly, all r-II and the majority of r-I stars have retrograde orbits, which may indicate an accretion origin.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا