No Arabic abstract
Evidence has increasingly mounted in recent decades that outflows of matter and energy from the central parsecs of our Galaxy have shaped the observed structure of the Milky Way on a variety of larger scales. On scales of ~15 pc, the Galactic centre has bipolar lobes that can be seen in both X-rays and radio, indicating broadly collimated outflows from the centre, directed perpendicular to the Galactic plane. On far larger scales approaching the size of the Galaxy itself, gamma-ray observations have identified the so-called Fermi Bubble features, implying that our Galactic centre has, or has recently had, a period of active energy release leading to a production of relativistic particles that now populate huge cavities on both sides of the Galactic plane. The X-ray maps from the ROSAT all-sky survey show that the edges of these cavities close to the Galactic plane are bright in X-rays. At intermediate scales (~150 pc), radio astronomers have found the Galactic Centre Lobe, an apparent bubble of emission seen only at positive Galactic latitudes, but again indicative of energy injection from near the Galactic centre. Here we report the discovery of prominent X-ray structures on these intermediate (hundred-parsec) scales above and below the plane, which appear to connect the Galactic centre region to the Fermi bubbles. We propose that these newly-discovered structures, which we term the Galactic Centre Chimneys, constitute a channel through which energy and mass, injected by a quasi-continuous train of episodic events at the Galactic centre, are transported from the central parsecs to the base of the Fermi bubbles.
In response to the comment posted by Nakashima et al. (arXiv:1903.1176), regarding prior claims for the features that we referred to as the Galactic Center Chimneys (2019, Nature, 567, 347), we point out the following: 1) The Nakashima et al. 2019 paper appeared in the arXiv on March 8th (1903.02571), after our paper was in the final stage of printing (accepted on January 30th). It is however interesting to see that the morphology of the brightest portions of the two results are in broad agreement (compare their Fig. 1 to our Extended Data Figs. 1 and 2). 2) Nakashima et al. 2013 ApJ 773, 20 claim the discovery of a blob of recombining plasma ~1deg south of Sgr A*, implying peculiar abundances. Again, their image (Fig. 1) agrees with the brightest portions of our images, although it does not show any direct connection between the plasma blob and the central parsec (e.g., such as the quasi-continuous chimney that we reported), nor evidence for an outflow from the center. We apologize for overlooking an appropriate citation to this contribution by Nakashima et al. 3) We fitted the XMM-Newton and Chandra data at the same position of the claimed recombining plasma and we did not find any clear-cut evidence for the presence of either an over-ionised plasma or peculiar abundances. Future X-ray calorimetric observations will presumably clarify this disagreement. 4) The continuity of the Chimney features, their quasi-symmetrical placement relative to Sgr A*, and their relatively sharp and well-defined edges are the essential features of our data that have led us to propose that the Chimneys are a unified columnar structure that represents a channel for the outflow of energy from the central region, possibly contributing to the stocking of the relativistic particle population manifested in the Fermi Bubbles.
A search for high-energy neutrinos coming from the direction of the Galactic Centre is performed using the data recorded by the ANTARES neutrino telescope from 2007 to 2012. The event selection criteria are chosen to maximise the sensitivity to possible signals produced by the self-annihilation of weakly interacting massive particles accumulated around the centre of the Milky Way with respect to the atmospheric background. After data unblinding, the number of neutrinos observed in the line of sight of the Galactic Centre is found to be compatible with background expectations. The 90% C.L. upper limits in terms of the neutrino+anti-neutrino flux, $rm Phi_{ u_{mu}+bar{ u}_mu}$, and the velocity averaged annihilation cross-section, $rm <sigma_{A}v>$, are derived for the WIMP self-annihilation channels into $rm bbar{b},W^{+}W^{-},tau^{+}tau^{-},mu^{+}mu^{-}, ubar{ u}$. The ANTARES limits for $rm <sigma_{A}v>$ are shown to be the most stringent for a neutrino telescope over the WIMP masses $rm 25,GeV < M_{WIMP} < 10,TeV$.
Through high-precision radio timing observations, we show that five recycled pulsars in the direction of the Galactic Centre (GC) have anomalous spin period time derivative ($dot P$) measurements -- PSRs J1748$-$3009, J1753$-$2819, J1757$-$2745, and J1804$-$2858 show negative values of $dot P$ and PSR J1801$-$3210 is found to have an exceptionally small value of $dot P$. We attribute these observed $dot P$ measurements to acceleration of these pulsars along their lines-of-sight (LOSs) due to the Galactic gravitational field. Using models of the Galactic mass distribution and pulsar velocities, we constrain the distances to these pulsars, placing them on the far-side of the Galaxy, providing the first accurate distance measurements to pulsars located in this region and allowing us to consider the electron density along these LOSs. We find the new electron density model YMW16 to be more consistent with these observations than the previous model NE2001. The LOS dynamics further constrain the model-dependent intrinsic $dot P$ values for these pulsars and they are consistent with measurements for other known pulsars. In the future, the independent distance measurements to these and other pulsars near the GC would allow us to constrain the Galactic gravitational potential more accurately.
Recent gamma-ray and cosmic-ray observations have put strong constraints on the amount of primordial black holes (PBHs) in our universe. In this article, we use the archival radio data of the inner Galactic Centre to constrain the PBH to dark matter ratio for three different PBH mass distributions including monochromatic, log-normal and power-law. We show that the amount of PBHs only constitutes a very minor component of dark matter at the Galactic Centre for a large parameter space.
Mira variables are useful distance indicators, due to their high luminosities and well-defined period-luminosity relation. We select 1863 Miras from SAAO and MACHO observations to examine their use as distance estimators in the Milky Way. We measure a distance to the Galactic centre of $R_0 = 7.9 pm 0.3$ kpc, which is in good agreement with other literature values. The uncertainty has two components of $sim$0.2 kpc each: the first is from our analysis and predominantly due to interstellar extinction, the second is due to zero-point uncertainties extrinsic to our investigation, such as the distance to the Large Magellanic Cloud (LMC). In an attempt to improve existing period-luminosity calibrations, we use theoretical models of Miras to determine the dependence of the period-luminosity relation on age, metallicity, and helium abundance, under the assumption that Miras trace the bulk stellar population. We find that at a fixed period of $log P = 2.4$, changes in the predicted $K_s$ magnitudes can be approximated by $Delta M_{Ks} approx -0.109(Delta rm{[Fe/H]}) + 0.033( {Delta}t/rm{Gyr}) + 0.021 ({Delta}Y/0.01)$, and these coefficients are nearly independent of period. The expected overestimate in the Galactic centre distance from using an LMC-calibrated relation is $sim$0.3 kpc. This prediction is not validated by our analysis; a few possible reasons are discussed. We separately show that while the predicted color-color diagrams of solar-neighbourhood Miras work well in the near-infrared, though there are offsets from the model predictions in the optical and mid-infrared.