Do you want to publish a course? Click here

Reversible Control of Magnetic Interactions by Electric Field in a Single Phase Material

268   0   0.0 ( 0 )
 Added by Philip Ryan Dr
 Publication date 2012
  fields Physics
and research's language is English




Ask ChatGPT about the research

Intrinsic magnetoelectric coupling describes the interaction between magnetic and electric polarization through an inherent microscopic mechanism in a single phase material. This phenomenon has the potential to control the magnetic state of a material with an electric field, an enticing prospect for device engineering. We demonstrate giant magnetoelectric cross-field control in a single phase rare earth titanate film. In bulk form, EuTiO3 is antiferromagnetic. However, both anti and ferromagnetic interactions coexist between different nearest neighbor europium ions. In thin epitaxial films, strain can be used to alter the relative strength of the magnetic exchange constants. Here, we not only show that moderate biaxial compression precipitates local magnetic competition, but also demonstrate that the application of an electric field at this strain state, switches the magnetic ground state. Using first principles density functional theory, we resolve the underlying microscopic mechanism resulting in the EuTiO3 G-type magnetic structure and illustrate how it is responsible for the giant cross-field magnetoelectric effect.



rate research

Read More

400 - A. Chernyshov , M. Overby , X. Liu 2009
Conventional computer electronics creates a dichotomy between how information is processed and how it is stored. Silicon chips process information by controlling the flow of charge through a network of logic gates. This information is then stored, most commonly, by encoding it in the orientation of magnetic domains of a computer hard disk. The key obstacle to a more intimate integration of magnetic materials into devices and circuit processing information is a lack of efficient means to control their magnetization. This is usually achieved with an external magnetic field or by the injection of spin-polarized currents. The latter can be significantly enhanced in materials whose ferromagnetic properties are mediated by charge carriers. Among these materials, conductors lacking spatial inversion symmetry couple charge currents to spin by intrinsic spin-orbit (SO) interactions, inducing nonequilibrium spin polarization tunable by local electric fields. Here we show that magnetization of a ferromagnet can be reversibly manipulated by the SO-induced polarization of carrier spins generated by unpolarized currents. Specifically, we demonstrate domain rotation and hysteretic switching of magnetization between two orthogonal easy axes in a model ferromagnetic semiconductor.
We report on the electric field control of magnetic phase transition temperatures in multiferroic Ni3V2O8 thin films. Using magnetization measurements, we find that the phase transition temperature to the canted antiferromagnetic state is suppressed by 0.2 K in an electric field of 30 MV/m, as compared to the unbiased sample. Dielectric measurements show that the transition temperature into the magnetic state associated with ferroelectric order increases by 0.2 K when the sample is biased at 25 MV/m. This electric field control of the magnetic transitions can be qualitatively understood using a mean field model incorporating a tri-linear coupling between the magnetic order parameters and spontaneous polarization.
The impact of an applied electric field on the exchange coupling parameters has been investigated based on first-principles electronic structure calculations by means of the KKR Green function method. The calculations have been performed for a Fe film, free-standing and deposited on two different substrates, having 1 monolayer (ML) thickness to minimize the effect of screening of the electric field typical for metallic systems. By comparing the results for the free-standing Fe ML with those for Fe on the various substrates, we could analyze the origin of the field-induced change of the exchange interactions. Compared to the free-standing Fe ML, in particular rather pronounced changes have been found for the Fe/Pt(111) system due to the localized electronic states at the Fe/Pt interface, which are strongly affected by the electric field and which play an important role for the Fe-Fe exchange interactions.
Control of magnetic domain wall motion by electric fields has recently attracted scientific attention because of its potential for magnetic logic and memory devices. Here, we report on a new driving mechanism that allows for magnetic domain wall motion in an applied electric field without the concurrent use of a magnetic field or spin-polarized electric current. The mechanism is based on elastic coupling between magnetic and ferroelectric domain walls in multiferroic heterostructures. Pure electric-field driven magnetic domain wall motion is demonstrated for epitaxial Fe films on BaTiO$_3$ with in-plane and out-of-plane polarized domains. In this system, magnetic domain wall motion is fully reversible and the velocity of the walls varies exponentially as a function of out-of-plane electric field strength.
We present the microscopic theory of improper multiferroicity in BiMnO3, which can be summarized as follows: (1) the ferroelectric polarization is driven by the hidden antiferromagnetic order in the otherwise centrosymmetric C2/c structure; (2) the relativistic spin-orbit interaction is responsible for the canted spin ferromagnetism. Our analysis is supported by numerical calculations of electronic polarization using Berrys phase formalism, which was applied to the low-energy model of BiMnO3 derived from the first-principles calculations. We explicitly show how the electric polarization can be controlled by the magnetic field and argue that BiMnO3 is a rare and potentially interesting material where ferroelectricity can indeed coexist and interplay with the ferromagnetism.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا