High order ring-exchange interactions are crucial for the study of quantum fluctuations on highly frustrated systems. We present the first exact quantum Monte Carlo study of a model of hard-core bosons with sixth order ring-exchange interactions on a two-dimensional kagome lattice. By using the Stochastic Green Function algorithm, we show that the system becomes unstable in the limit of large ring-exchange interactions. It undergoes a phase separation at all fillings, except at 1/3 and 2/3 fillings for which the superfluid density vanishes and an unusual mixed valence bond and charge density ordered solid is formed.
Ring-exchange interactions have been proposed as a possible mechanism for a Bose-liquid phase at zero temperature, a phase that is compressible with no superfluidity. Using the Stochastic Green Function algorithm (SGF), we study the effect of these interactions for bosons on a two-dimensional triangular lattice. We show that the supersolid phase, that is known to exist in the ground state for a wide range of densities, is rapidly destroyed as the ring-exchange interactions are turned on. We establish the ground-state phase diagram of the system, which is characterized by the absence of the expected Bose-liquid phase.
We study the attractive fermionic Hubbard model on a honeycomb lattice using determinantal quantum Monte Carlo simulations. By increasing the interaction strength U (relative to the hopping parameter t) at half-filling and zero temperature, the system undergoes a quantum phase transition at 5.0 < U_c/t < 5.1 from a semi-metal to a phase displaying simultaneously superfluid behavior and density order. Doping away from half-filling, and increasing the interaction strength at finite but low temperature T, the system always appears to be a superfluid exhibiting a crossover between a BCS and a molecular regime. These different regimes are analyzed by studying the spectral function. The formation of pairs and the emergence of phase coherence throughout the sample are studied as U is increased and T is lowered.
We investigate cold bosonic impurity atoms trapped in a vortex lattice formed by condensed bosons of another species. We describe the dynamics of the impurities by a bosonic Hubbard model containing occupation-dependent parameters to capture the effects of strong impurity-impurity interactions. These include both a repulsive direct interaction and an attractive effective interaction mediated by the BEC. The occupation dependence of these two competing interactions drastically affects the Hubbard model phase diagram, including causing the disappearance of some Mott lobes
The experimentally observed loss of superfluidity by introducing fermions to the boson Hubbard system on an optical lattice is explained. We show that the virtual transitions of the bosons to the higher Bloch bands, coupled with the contact boson-fermion interactions of either sign, result in an effective increase of the boson on-site repulsion. If this renormalization of the on-site potential is dominant over the fermion screening of the boson interactions, the Mott insulating lobes of the Bose-Hubbard phase diagram will be enhanced for either sign of the boson-fermion interactions. We discuss implications for cold atom experiments where the expansion of the Mott lobes by fermions has been conclusively established.
We have used exact numerical diagonalization to study the excitation spectrum and the dynamic spin correlations in the $s=1/2$ next-next-nearest neighbor Heisenberg antiferromagnet on the square lattice, with additional 4-spin ring exchange from higher order terms in the Hubbard expansion. We have varied the ratio between Hubbard model parameters, $t/U$, to obtain different relative strengths of the exchange parameters, while keeping electrons localized. The Hubbard model parameters have been parametrized via an effective ring exchange coupling, $J_r$, which have been varied between 0$J$ and 1.5$J$. We find that ring exchange induces a quantum phase transition from the $(pi, pi)$ ordered Ne`el state to a $(pi/2, pi/2)$ ordered state. This quantum critical point is reduced by quantum fluctuations from its mean field value of $J_r/J = 2$ to a value of $sim 1.1$. At the quantum critical point, the dynamical correlation function shows a pseudo-continuum at $q$-values between the two competing ordering vectors.