No Arabic abstract
We study the attractive fermionic Hubbard model on a honeycomb lattice using determinantal quantum Monte Carlo simulations. By increasing the interaction strength U (relative to the hopping parameter t) at half-filling and zero temperature, the system undergoes a quantum phase transition at 5.0 < U_c/t < 5.1 from a semi-metal to a phase displaying simultaneously superfluid behavior and density order. Doping away from half-filling, and increasing the interaction strength at finite but low temperature T, the system always appears to be a superfluid exhibiting a crossover between a BCS and a molecular regime. These different regimes are analyzed by studying the spectral function. The formation of pairs and the emergence of phase coherence throughout the sample are studied as U is increased and T is lowered.
Motivated by the recent experimental realization of the Haldane model by ultracold fermions in an optical lattice, we investigate phase diagrams of the hard-core Bose-Hubbard model on a honeycomb lattice. This model is closely related with a spin-1/2 antiferromagnetic (AF) quantum spin model. Nearest-neighbor (NN) hopping amplitude is positive and it prefers an AF configurations of phases of Bose-Einstein condensates. On the other hand, an amplitude of the next-NN hopping depends on an angle variable as in the Haldane model. Phase diagrams are obtained by means of an extended path-integral Monte-Carlo simulations. Besides the AF state, a 120$^o$-order state, there appear other phases including a Bose metal in which no long-range orders exist.
We consider two-component one-dimensional quantum gases at special imbalanced commensurabilities which lead to the formation of multimer (multi-particle bound-states) as the dominant order parameter. Luttinger liquid theory supports a mode-locking mechanism in which mass (or velocity) asymmetry is identified as the key ingredient to stabilize such states. While the scenario is valid both in the continuum and on a lattice, the effects of umklapp terms relevant for densities commensurate with the lattice spacing are also mentioned. These ideas are illustrated and confronted with the physics of the asymmetric (mass-imbalanced) fermionic Hubbard model with attractive interactions and densities such that a trimer phase can be stabilized. Phase diagrams are computed using density-matrix renormalization group techniques, showing the important role of the total density in achieving the novel phase. The effective physics of the trimer gas is as well studied. Lastly, the effect of a parabolic confinement and the emergence of a crystal phase of trimers are briefly addressed. This model has connections with the physics of imbalanced two-component fermionic gases and Bose-Fermi mixtures as the latter gives a good phenomenological description of the numerics in the strong-coupling regime.
The mechanism of fermionic pairing is the key to understanding various phenomena such as high-temperature superconductivity and the pseudogap phase in cuprate materials. We study the pair correlations in the attractive Hubbard model using ultracold fermions in a two-dimensional optical lattice. By combining the fluctuation-dissipation theorem and the compressibility equation of state, we extract the interacting pair correlation functions and deduce a characteristic length scale of pairs as a function of interaction and density filling. At sufficiently low filling and weak on-site interaction, we observe that the pair correlations extend over a few lattice sites even at temperatures above the superfluid transition temperature.
We investigate the response to radio-frequency driving of an ultracold gas of attractively interacting fermions in a one-dimensional optical lattice. We study the system dynamics by monitoring the driving-induced population transfer to a third state, and the evolution of the momentum density and pair distributions. Depending on the frequency of the radio-frequency field, two different dynamical regimes emerge when considering the evolution of the third level population. One regime exhibits (off)resonant many-body oscillations reminiscent of Rabi oscillations in a discrete two-level system, while the other displays a strong linear rise. Within this second regime, we connect, via linear response theory, the extracted transfer rate to the system single-particle spectral function, and infer the nature of the excitations from Bethe ansatz calculations. In addition, we show that this radio-frequency technique can be employed to gain insights into this many-body system coupling mechanism away from equilibrium. This is done by monitoring the momentum density redistributions and the evolution of the pair correlations during the drive. Capturing such non-equilibrium physics goes beyond a linear response treatment, and is achieved here by conducting time-dependent matrix product state simulations.
Motivated by recent experiments on atomic Dirac fermions in a tunable honeycomb optical lattice, we study the attractive Hubbard model of superfluidity in the anisotropic honeycomb lattice. At weak-coupling, we find that the maximum mean field pairing transition temperature, as a function of density and interaction strength, occurs for the case with isotropic hopping amplitudes. In this isotropic case, we go beyond mean field theory and study collective fluctuations, treating both pairing and density fluctuations for interaction strengths ranging from weak to strong coupling. We find evidence for a sharp sound mode, together with a well-defined Leggett mode over a wide region of the phase diagram. We also calculate the superfluid order parameter and collective modes in the presence of nonzero superfluid flow. The flow-induced softening of these collective modes leads to dynamical instabilities involving stripe-like density modulations as well as a Leggett-mode instability associated with the natural sublattice symmetry breaking charge-ordered state on the honeycomb lattice. The latter provides a non-trivial test for the experimental realization of the one-band Hubbard model. We delineate regimes of the phase diagram where the critical current is limited by depairing or by such collective instabilities, and discuss experimental implications of our results.