We investigate cold bosonic impurity atoms trapped in a vortex lattice formed by condensed bosons of another species. We describe the dynamics of the impurities by a bosonic Hubbard model containing occupation-dependent parameters to capture the effects of strong impurity-impurity interactions. These include both a repulsive direct interaction and an attractive effective interaction mediated by the BEC. The occupation dependence of these two competing interactions drastically affects the Hubbard model phase diagram, including causing the disappearance of some Mott lobes
High order ring-exchange interactions are crucial for the study of quantum fluctuations on highly frustrated systems. We present the first exact quantum Monte Carlo study of a model of hard-core bosons with sixth order ring-exchange interactions on a two-dimensional kagome lattice. By using the Stochastic Green Function algorithm, we show that the system becomes unstable in the limit of large ring-exchange interactions. It undergoes a phase separation at all fillings, except at 1/3 and 2/3 fillings for which the superfluid density vanishes and an unusual mixed valence bond and charge density ordered solid is formed.
We study the exact solution for two atomic particles in an optical lattice interacting via a Feshbach resonance. The analysis includes the influence of all higher bands, as well as the proper renormalization of molecular energy in the closed channel. Using an expansion in Bloch waves, we show that the problem reduces to a simple matrix equation, which can be solved numerically very efficient. This exact solution allows for the precise determination of the parameters in the Hubbard model and the two-particle bound state energy. We identify the regime, where a single band Hubbard model fails to describe the scattering of the atoms as well as the bound states.
We investigate the quantum phases of ultracold atoms trapped in a vortex lattice using a mixture of two bosonic species (A and B), in the presence of an artificial gauge field. Heavy atoms of species B are confined in the array of vortices generated in species A, and they are described through a Bose-Hubbard model. In contrast to the optical-lattice setups, the vortex lattice has an intrinsic dynamics, given by its Tkachenko modes. Including these quantum fluctuations in the effective model for B atoms yields an extended Bose-Hubbard model, with an additional phonon-mediated long-range attraction. The ground-state phase diagram of this model is computed through a variational ansatz and the quantum Monte Carlo technique. When compared with the ordinary Bose-Hubbard case, the long-range interatomic attraction causes a shift and resizing of the Mott-insulator regions. Finally, we discuss the experimental feasibility of the proposed scheme, which relies on the proper choice of the atomic species and on a large control of physical parameters, like the scattering lengths and the vorticity.
We report the equilibrium vortex phase diagram of a rotating two-band Fermi gas confined to a cylindrically symmetric parabolic trapping potential, using the recently developed finite-temperature effective field theory [Phys. Rev. A $bf{94}$, 023620 (2016)]. A non-monotonic resonant dependence of the free energy as a function of the temperature and the rotation frequency is revealed for a two-band superfluid. We particularly focus on novel features that appear as a result of interband interactions and can be experimentally resolved. The resonant dependence of the free energy is directly manifested in vortex phase diagrams, where areas of stability for both integer and fractional vortex states are found. The study embraces the BCS-BEC crossover regime and the entire temperature range below the critical temperature $T_{c}$. Significantly different behavior of vortex matter as a function of the interband coupling is revealed in the BCS and BEC regimes.
Understanding quantum dynamics in a two-dimensional Bose-Einstein condensate (BEC) relies on understanding how vortices interact with each others microscopically and with local imperfections of the potential which confines the condensate. Within a system consisting of many vortices, the trajectory of a vortex-antivortex pair is often scattered by a third vortex, an effect previously characterised. However, the natural question remains as to how much of this effect is due to the velocity induced by this third vortex and how much is due to the density inhomogeneity which it introduces. In this work, we describe the various qualitative scenarios which occur when a vortex-antivortex pair interacts with a smooth density impurity whose profile is identical to that of a vortex but lacks the circulation around it.