Do you want to publish a course? Click here

Long-time behavior of the momentum distribution during the sudden expansion of a spin-imbalanced Fermi gas in one dimension

443   0   0.0 ( 0 )
 Publication date 2012
  fields Physics
and research's language is English




Ask ChatGPT about the research

We study the sudden expansion of spin-imbalanced ultracold lattice fermions with attractive interactions in one dimension after turning off the longitudinal confining potential. We show that the momentum distribution functions of majority and minority fermions approach stationary values quickly due to a quantum distillation mechanism that results in a spatial separation of pairs and majority fermions. As a consequence, Fulde-Ferrell-Larkin-Ovchinnikov (FFLO) correlations are lost during the expansion. Furthermore, we argue that the shape of the stationary momentum distribution functions can be understood by relating them to the integrals of motion in this integrable quantum system. We discuss our results in the context of proposals to observe FFLO correlations, related to recent experiments by Liao et al., Nature 467, 567 (2010).



rate research

Read More

We show that in the sudden expansion of a spin-balanced two-component Fermi gas into an empty optical lattice induced by releasing particles from a trap, over a wide parameter regime, the radius $R_n$ of the particle cloud grows linearly in time. This allow us to define the expansion velocity $V_{ex}$ from $R_n=V_{ex}t$. The goal of this work is to clarify the dependence of the expansion velocity on the initial conditions which we establish from time-dependent density matrix renormalization group simulations, both for a box trap and a harmonic trap. As a prominent result, the presence of a Mott-insulating region leaves clear fingerprints in the expansion velocity. Our predictions can be verified in experiments with ultra-cold atoms.
We investigate the expansion of bosons and fermions in a homogeneous lattice after a sudden removal of the trapping potential using exact numerical methods. As a main result, we show that in one dimension, both bosonic and fermionic Mott insulators expand with the same velocity, irrespective of the interaction strength, provided the expansion starts from the ground state of the trapped gas. Furthermore, their density profiles become identical during the expansion: The asymptotic density dynamics is identical to that of initially localized, non-interacting particles, and the asymptotic velocity distribution is flat. The expansion velocity for initial correlated Mott insulating states is therefore independent of the interaction strength and particle statistics. Interestingly, this non-equilibrium dynamics is sensitive to the interaction driven quantum phase transition in the Bose-Hubbard model: While being constant in the Mott phase, the expansion velocity decreases in the superfluid phase and vanishes for large systems in the non-interacting limit. These results are compared to the set-up of a recent experiment [PRL 110, 205301 (2013)], where the trap opening was combined with an interaction quench from infinitely strong interactions to finite values. We carry out an analogous analysis for a two-component Fermi gas, with similar observations. In addition, we study the effect of breaking the integrability of hard-core bosons in different ways: While the fast ballistic expansion from the ground state of Mott insulators in one dimension remains unchanged for finite interactions, we observe strong deviations from this behavior on a two-leg ladder even in the hard-core case. This change in dynamics bares similarities with the dynamics in the dimensional crossover from one to two dimensions observed in the aformentioned experimental study.
Weak attractive interactions in a spin-imbalanced Fermi gas induce a multi-particle instability, binding multiple fermions together. The maximum binding energy per particle is achieved when the ratio of the number of up- and down-spin particles in the instability is equal to the ratio of the up- and down-spin densities of states in momentum at the Fermi surfaces, to utilize the variational freedom of all available momentum states. We derive this result using an analytical approach, and verify it using exact diagonalization. The multi-particle instability extends the Cooper pairing instability of balanced Fermi gases to the imbalanced case, and could form the basis of a many-body state, analogously to the construction of the Bardeen-Cooper-Schrieffer theory of superconductivity out of Cooper pairs.
We model the one-dimension (1D) to three-dimension (3D) crossover in a cylindrically trapped Fermi gas with attractive interactions and spin-imbalance. We calculate the mean-field phase diagram, and study the relative stability of exotic superfluid phases as a function of interaction strength and temperature. For weak interactions and low density, we find 1D-like behavior, which repeats as a function of the chemical potential as new channels open. For strong interactions, mixing of single-particle levels gives 3D-like behavior at all densities. Furthermore, we map the system to an effective 1D model, finding significant density dependence of the effective 1D scattering length.
We present a numerical study of the one-dimensional BCS-BEC crossover of a spin-imbalanced Fermi gas. The crossover is described by the Bose-Fermi resonance model in a real space representation. Our main interest is in the behavior of the pair correlations, which, in the BCS limit, are of the Fulde-Ferrell-Larkin-Ovchinnikov type, while in the BEC limit, a superfluid of diatomic molecules forms that exhibits quasi-condensation at zero momentum. We use the density matrix renormalization group method to compute the phase diagram as a function of the detuning of the molecular level and the polarization. As a main result, we show that FFLO-like correlations disappear well below full polarization close to the resonance. The critical polarization depends on both the detuning and the filling.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا