Do you want to publish a course? Click here

Dimensional Crossover in a Spin-imbalanced Fermi gas

433   0   0.0 ( 0 )
 Added by Shovan Dutta
 Publication date 2015
  fields Physics
and research's language is English




Ask ChatGPT about the research

We model the one-dimension (1D) to three-dimension (3D) crossover in a cylindrically trapped Fermi gas with attractive interactions and spin-imbalance. We calculate the mean-field phase diagram, and study the relative stability of exotic superfluid phases as a function of interaction strength and temperature. For weak interactions and low density, we find 1D-like behavior, which repeats as a function of the chemical potential as new channels open. For strong interactions, mixing of single-particle levels gives 3D-like behavior at all densities. Furthermore, we map the system to an effective 1D model, finding significant density dependence of the effective 1D scattering length.



rate research

Read More

We present a numerical study of the one-dimensional BCS-BEC crossover of a spin-imbalanced Fermi gas. The crossover is described by the Bose-Fermi resonance model in a real space representation. Our main interest is in the behavior of the pair correlations, which, in the BCS limit, are of the Fulde-Ferrell-Larkin-Ovchinnikov type, while in the BEC limit, a superfluid of diatomic molecules forms that exhibits quasi-condensation at zero momentum. We use the density matrix renormalization group method to compute the phase diagram as a function of the detuning of the molecular level and the polarization. As a main result, we show that FFLO-like correlations disappear well below full polarization close to the resonance. The critical polarization depends on both the detuning and the filling.
Motivated by a recent experiment [Revelle et al. Phys. Rev. Lett. 117, 235301 (2016)] that characterized the one- to three-dimensional crossover in a spin-imbalanced ultracold gas of $^6$Li atoms trapped in a two-dimensional array of tunnel-coupled tubes, we calculate the phase diagram for this system using Hartree-Fock Bogoliubov-de Gennes mean-field theory, and compare the results with experimental data. Mean-field theory predicts fully spin-polarized normal, partially spin-polarized normal, spin-polarized superfluid, and spin-balanced superfluid phases in a homogeneous system. We use the local density approximation to obtain density profiles of the gas in a harmonic trap. We compare these calculations with experimental measurements in Revelle {em et al.} as well as previously unpublished data. Our calculations qualitatively agree with experimentally-measured densities and coordinates of the phase boundaries in the trap, and quantitatively agree with experimental measurements at moderate-to-large polarizations. Our calculations also reproduce the experimentally-observed universal scaling of the phase boundaries for different scattering lengths at a fixed value of scaled inter-tube tunneling. However, our calculations have quantitative differences with experimental measurements at low polarization, and fail to capture important features of the one- to three-dimensional crossover observed in experiments. These suggest the important role of physics beyond-mean-field theory in the experiments. We expect that our numerical results will aid future experiments in narrowing the search for the FFLO phase.
We study spin- and mass-imbalanced mixtures of spin-$tfrac{1}{2}$ fermions interacting via an attractive contact potential in one spatial dimension. Specifically, we address the influence of unequal particle masses on the pair formation by means of the complex Langevin method. By computing the pair-correlation function and the associated pair-momentum distribution we find that inhomogeneous pairing is present for all studied spin polarizations and mass imbalances. To further characterize the pairing behavior, we analyze the density-density correlations in momentum space, the so-called shot noise, which is experimentally accessible through time-of-flight imaging. At finite spin polarization, the latter is known to show distinct maxima at momentum configurations associated with the Fulde-Ferrell-Larkin-Ovchinnikov (FFLO) instability. Besides those maxima, we find that additional features emerge in the noise correlations when mass imbalance is increased, revealing the stability of FFLO-type correlations against mass imbalance and furnishing an experimentally accessible signature to probe this type of pairing.
A single down spin Fermion with an attractive, zero range interaction with a Fermi sea of up-spin Fermions forms a polaronic quasiparticle. The associated quasiparticle weight vanishes beyond a critical strength of the attractive interaction, where a many-body bound state is formed. From a variational wavefunction in the molecular limit, we determine the critical value for the polaron to molecule transition. The value agrees well with the diagrammatic Monte Carlo results of Prokofev and Svistunov and is consistent with recent rf-spectroscopy measurements of the quasiparticle weight by Schirotzek et. al. In addition, we calculate the contact coefficient of the strongly imbalanced gas, using the adiabatic theorem of Tan and discuss the implications of the polaron to molecule transition for the phase diagram of the attractive Fermi gas at finite imbalance.
We calculate the density profiles of a trapped spin-imbalanced Fermi gas with attractive interactions in a one-dimensional optical lattice, using both the local density approximation (LDA) and density matrix renormalization group (DMRG) simulations. Based on the exact equation of state obtained by Bethe ansatz, LDA predicts that the gas phase-separates into shells with a partially polarized core and fully paired wings, where the latter occurs below a critical spin polarization. This behavior is also seen in numerically exact DMRG calculations at sufficiently large particle numbers. Unlike the continuum case, we show that the critical polarization is a non monotonic function of the interaction strength and vanishes in the limit of large interactions.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا