Do you want to publish a course? Click here

Irreversibility and time relaxation in electrostatic doping of oxide interfaces

146   0   0.0 ( 0 )
 Added by Nicolas Bergeal
 Publication date 2012
  fields Physics
and research's language is English




Ask ChatGPT about the research

Two-dimensional electron gas (2DEG) confined in quantum wells at insulating oxide interfaces have attracted much attention as their electronic properties display a rich physics with various electronics orders such as superconductivity and magnetism. A particularly exciting features of these hetero-structures lies in the possibility to control their electronic properties by electrostatic gating, opening up new opportunities for the development of oxide based electronics. However, unexplained gating hysteresis and time relaxation of the 2DEG resistivity have been reported in some bias range, raising the question of the precise role of the gate voltage. Here we show that in LaTiO3/SrTiO3 and LaAlO3/SrTiO3 heterostructures, above a filling threshold, electrons irreversibly escape out of the well. This mechanism, which is directly responsible for the hysteresis and time relaxation, can be entirely described by a simple analytical model derived in this letter. Our results highlight the crucial role of the gate voltage both on the shape and the filling of the quantum well. They also demonstrate that it is possible to achieve a low-carrier density regime in a semiconductor limit, whereas the high-carrier density regime is intrinsically limited.



rate research

Read More

Heterostructures and superlattices consisting of a prototype Mott insulator, GdTiO3, and the band insulator SrTiO3 are grown by molecular beam epitaxy and show intrinsic electronic reconstruction, approximately 1/2 electron per surface unit cell at each GdTiO3/SrTiO3 interface. The sheet carrier densities in all structures containing more than one unit cell of SrTiO3 are independent of layer thicknesses and growth sequences, indicating that the mobile carriers are in a high concentration, two-dimensional electron gas bound to the interface. These carrier densities closely meet the electrostatic requirements for compensating the fixed charge at these polar interfaces. Based on the experimental results, insights into interfacial band alignments, charge distribution and the influence of different electrostatic boundary conditions are obtained.
Ferroelectric field-effect doping has emerged as a powerful approach to manipulate the ground state of correlated oxides, opening the door to a new class of field-effect devices. However, this potential is not fully exploited so far, since the size of the field-effect doping is generally much smaller than expected. Here we study the limiting factors through magneto-transport, scanning transmission electron and piezo-response force microscopy in ferroelectric/superconductor (YBa2Cu3O7-{delta} /BiFeO3) heterostructures, a model system showing very strong field-effects. Still, we find that they are limited in the first place by an incomplete ferroelectric switching. This can be explained by the existence of a preferential polarization direction set by the atomic terminations at the interface. More importantly, we also find that the field-effect carrier doping is accompanied by a strong modulation of the carrier mobility. Besides making quantification of field-effects via Hall measurements not straightforward, this finding suggests that ferroelectric poling produces structural changes (e.g. charged defects or structural distortions) in the correlated oxide channel. Those findings have important consequences for the understanding of ferroelectric field-effects and for the strategies to further enhance them.
The unique surface edge states make topological insulators a primary focus among different applications. In this article, we synthesized a large single crystal of Niobium(Nb)-doped Bi2Se3 topological insulator (TI) with a formula Nb0.25Bi2Se3. The single crystal has characterized by using various techniques such as Powder X-ray Diffractometer (PXRD), DC magnetization measurements, Raman, and Ultrafast transient absorption spectroscopy (TRUS). There are (00l) reflections in the PXRD, and Superconductivity ingrown crystal is evident from clearly visible diamagnetic transition at 2.5K in both FC and ZFC measurements. The Raman spectroscopy is used to find the different vibrational modes in the sample. Further, the sample is excited by a pump of 1.90 eV, and a kinetic decay profile at 1.38 eV is considered for terahertz analysis. The differential decay profile has different vibrations, and these oscillations have analyzed in terms of terahertz. This article not only provides evidence of terahertz generation in Nb-doped sample along with undoped sample but also show that the dopant atom changes the dynamics of charge carriers and thereby the shift in the Terahertz frequency response. In conclusion, a suitable dopant can be used as a processor for the tunability of terahertz frequency in TI.
The appearance of microcracks in CeO$_2$ buffer layers, as used in buffer layer architectures for coated superconductors, indicates the presence of stress between this buffer layer and the substrate. This stress can originate from the differences in thermal expansion or differences in lattice parameters between the CeO$_2$ buffer layer and the substrate. In this article, we study, by means of textit{ab initio} density functional theory calculations, the influence of group IV doping elements on the lattice parameter and bulk modulus of CeO$_2$. Vegards law behavior is found for the lattice parameter in systems without oxygen vacancies, and the Shannon crystal radii for the doping elements are retrieved from the lattice expansions. We show that the lattice parameter of the doped CeO$_2$ can be matched to that of the La$_2$Zr$_2$O$_7$ coated NiW substrate substrate for dopant concentrations of about $5%$, and that bulk modulus matching is either not possible or would require extreme doping concentrations.
175 - Z. Q. Liu , C. J. Li , W. M. Lu 2013
The relative importance of atomic defects and electron transfer in explaining conductivity at the crystalline LaAlO3/SrTiO3 interface has been a topic of debate. Metallic interfaces with similar electronic properties produced by amorphous oxide overlayers on SrTiO3 have called in question the original polarization catastrophe model. We resolve the issue by a comprehensive comparison of (100)-oriented SrTiO3 substrates with crystalline and amorphous overlayers of LaAlO3 of different thicknesses prepared under different oxygen pressures. For both types of overlayers, there is a critical thickness for the appearance of conductivity, but its value is always 4 unit cells (around 1.6 nm) for the oxygen-annealed crystalline case, whereas in the amorphous case, the critical thickness could be varied in the range 0.5 to 6 nm according to the deposition conditions. Subsequent ion milling of the overlayer restores the insulating state for the oxygen-annealed crystalline heterostructures but not for the amorphous ones. Oxygen post-annealing removes the oxygen vacancies, and the interfaces become insulating in the amorphous case. However, the interfaces with a crystalline overlayer remain conducting with reduced carrier density. These results demonstrate that oxygen vacancies are the dominant source of mobile carriers when the LaAlO3 overlayer is amorphous, while both oxygen vacancies and polarization catastrophe contribute to the interface conductivity in unannealed crystalline LaAlO3/SrTiO3 heterostructures, and the polarization catastrophe alone accounts for the conductivity in oxygen-annealed crystalline LaAlO3/SrTiO3 heterostructures. Furthermore, we find that the crystallinity of the LaAlO3 layer is crucial for the polarization catastrophe mechanism in the case of crystalline LaAlO3 overlayers.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا