Do you want to publish a course? Click here

Metal Doping in Topological Insulators- A Key for Tunable Generation of Terahertz

91   0   0.0 ( 0 )
 Added by Veer Awana Dr
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

The unique surface edge states make topological insulators a primary focus among different applications. In this article, we synthesized a large single crystal of Niobium(Nb)-doped Bi2Se3 topological insulator (TI) with a formula Nb0.25Bi2Se3. The single crystal has characterized by using various techniques such as Powder X-ray Diffractometer (PXRD), DC magnetization measurements, Raman, and Ultrafast transient absorption spectroscopy (TRUS). There are (00l) reflections in the PXRD, and Superconductivity ingrown crystal is evident from clearly visible diamagnetic transition at 2.5K in both FC and ZFC measurements. The Raman spectroscopy is used to find the different vibrational modes in the sample. Further, the sample is excited by a pump of 1.90 eV, and a kinetic decay profile at 1.38 eV is considered for terahertz analysis. The differential decay profile has different vibrations, and these oscillations have analyzed in terms of terahertz. This article not only provides evidence of terahertz generation in Nb-doped sample along with undoped sample but also show that the dopant atom changes the dynamics of charge carriers and thereby the shift in the Terahertz frequency response. In conclusion, a suitable dopant can be used as a processor for the tunability of terahertz frequency in TI.



rate research

Read More

Recently discovered alongside its sister compounds KV$_3$Sb$_5$ and RbV$_3$Sb$_5$, CsV$_3$Sb$_5$ crystallizes with an ideal kagome network of vanadium and antimonene layers separated by alkali metal ions. This work presents the electronic properties of CsV$_3$Sb$_5$, demonstrating bulk superconductivity in single crystals with a T$_{c} = 2.5$K. The normal state electronic structure is studied via angle-resolved photoemission spectroscopy (ARPES) and density functional theory (DFT), which categorize CsV$_3$Sb$_5$ as a $mathbb{Z}_2$ topological metal. Multiple protected Dirac crossings are predicted in close proximity to the Fermi level ($E_F$), and signatures of normal state correlation effects are also suggested by a high temperature charge density wave-like instability. The implications for the formation of unconventional superconductivity in this material are discussed.
We consider a three-dimensional topological insulator (TI) wire with a non-uniform chemical potential induced by gating across the cross-section. This inhomogeneity in chemical potential lifts the degeneracy between two one-dimensional surface state subbands. A magnetic field applied along the wire, due to orbital effects, breaks time-reversal symmetry and lifts the Kramers degeneracy at zero-momentum. If placed in proximity to an $s$-wave superconductor, the system can be brought into a topological phase at relatively weak magnetic fields. Majorana bound states (MBSs), localized at the ends of the TI wire, emerge and are present for an exceptionally large region of parameter space in realistic systems. Unlike in previous proposals, these MBSs occur without the requirement of a vortex in the superconducting pairing potential, which represents a significant simplification for experiments. Our results open a pathway to the realisation of MBSs in present day TI wire devices.
The appearance of microcracks in CeO$_2$ buffer layers, as used in buffer layer architectures for coated superconductors, indicates the presence of stress between this buffer layer and the substrate. This stress can originate from the differences in thermal expansion or differences in lattice parameters between the CeO$_2$ buffer layer and the substrate. In this article, we study, by means of textit{ab initio} density functional theory calculations, the influence of group IV doping elements on the lattice parameter and bulk modulus of CeO$_2$. Vegards law behavior is found for the lattice parameter in systems without oxygen vacancies, and the Shannon crystal radii for the doping elements are retrieved from the lattice expansions. We show that the lattice parameter of the doped CeO$_2$ can be matched to that of the La$_2$Zr$_2$O$_7$ coated NiW substrate substrate for dopant concentrations of about $5%$, and that bulk modulus matching is either not possible or would require extreme doping concentrations.
Two-dimensional electron gas (2DEG) confined in quantum wells at insulating oxide interfaces have attracted much attention as their electronic properties display a rich physics with various electronics orders such as superconductivity and magnetism. A particularly exciting features of these hetero-structures lies in the possibility to control their electronic properties by electrostatic gating, opening up new opportunities for the development of oxide based electronics. However, unexplained gating hysteresis and time relaxation of the 2DEG resistivity have been reported in some bias range, raising the question of the precise role of the gate voltage. Here we show that in LaTiO3/SrTiO3 and LaAlO3/SrTiO3 heterostructures, above a filling threshold, electrons irreversibly escape out of the well. This mechanism, which is directly responsible for the hysteresis and time relaxation, can be entirely described by a simple analytical model derived in this letter. Our results highlight the crucial role of the gate voltage both on the shape and the filling of the quantum well. They also demonstrate that it is possible to achieve a low-carrier density regime in a semiconductor limit, whereas the high-carrier density regime is intrinsically limited.
Topological band theory has achieved great success in the high-throughput search for topological band structures both in paramagnetic and magnetic crystal materials. However, a significant proportion of materials are topologically trivial insulators at the Fermi level. In this paper, we show that, remarkably, for a subset of the topologically trivial insulators, knowing only their electron number and the Wyckoff positions of the atoms we can separate them into two groups: the obstructed atomic insulator (OAI) and the atomic insulator (AI). The interesting group, the OAI, have a center of charge not localized on the atoms. Using the theory of topological quantum chemistry, in this work we first derive the necessary and sufficient conditions for a topologically trivial insulator to be a filling enforced obstructed atomic insulator (feOAI) in the 1651 Shubnikov space groups. Remarkably, the filling enforced criteria enable the identification of obstructed atomic bands without knowing the representations of the band structures. Hence, no ab-initio calculations are needed for the filling enforced criteria, although they are needed to obtain the band gaps. With the help of the Topological Quantum Chemistry website, we have performed a high-throughput search for feOAIs and have found that 957 ICSD entries (638 unique materials) are paramagnetic feOAIs, among which 738 (475) materials have an indirect gap. The metallic obstructed surface states of feOAIs are also showcased by several material examples.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا