Do you want to publish a course? Click here

Electrostatic carrier doping of GdTiO3/SrTiO3 interfaces

362   0   0.0 ( 0 )
 Added by Susanne Stemmer
 Publication date 2011
  fields Physics
and research's language is English




Ask ChatGPT about the research

Heterostructures and superlattices consisting of a prototype Mott insulator, GdTiO3, and the band insulator SrTiO3 are grown by molecular beam epitaxy and show intrinsic electronic reconstruction, approximately 1/2 electron per surface unit cell at each GdTiO3/SrTiO3 interface. The sheet carrier densities in all structures containing more than one unit cell of SrTiO3 are independent of layer thicknesses and growth sequences, indicating that the mobile carriers are in a high concentration, two-dimensional electron gas bound to the interface. These carrier densities closely meet the electrostatic requirements for compensating the fixed charge at these polar interfaces. Based on the experimental results, insights into interfacial band alignments, charge distribution and the influence of different electrostatic boundary conditions are obtained.



rate research

Read More

Two-dimensional electron gas (2DEG) confined in quantum wells at insulating oxide interfaces have attracted much attention as their electronic properties display a rich physics with various electronics orders such as superconductivity and magnetism. A particularly exciting features of these hetero-structures lies in the possibility to control their electronic properties by electrostatic gating, opening up new opportunities for the development of oxide based electronics. However, unexplained gating hysteresis and time relaxation of the 2DEG resistivity have been reported in some bias range, raising the question of the precise role of the gate voltage. Here we show that in LaTiO3/SrTiO3 and LaAlO3/SrTiO3 heterostructures, above a filling threshold, electrons irreversibly escape out of the well. This mechanism, which is directly responsible for the hysteresis and time relaxation, can be entirely described by a simple analytical model derived in this letter. Our results highlight the crucial role of the gate voltage both on the shape and the filling of the quantum well. They also demonstrate that it is possible to achieve a low-carrier density regime in a semiconductor limit, whereas the high-carrier density regime is intrinsically limited.
We have measured photoemission spectra of SrTiO3/LaTiO3 superlattices with a topmost SrTiO3 layer of variable thickness. Finite coherent spectral weight with a clear Fermi cut-off was observed at chemically abrupt SrTiO3/LaTiO3 interfaces, indicating that an ``electronic reconstruction occurs at the interface between the Mott insulator LaTiO3 and the band insulator SrTiO3. For SrTiO3/LaTiO3 interfaces annealed at high temperatures (~ 1000 C), which leads to Sr/La atomic interdiffusion and hence to the formation of La1-xSrxTiO3-like material, the intensity of the incoherent part was found to be dramatically reduced whereas the coherent part with a sharp Fermi cut-off is enhanced due to the spread of charge. These important experimental features are well reproduced by layer dynamical-mean-field-theory calculation.
282 - O. Copie , V. Garcia , C. Bodefeld 2009
Using a low-temperature conductive-tip atomic force microscope in cross-section geometry we have characterized the local transport properties of the metallic electron gas that forms at the interface between LaAlO3 and SrTiO3. At low temperature, we find that the carriers do not spread away from the interface but are confined within ~10 nm, just like at room temperature. Simulations taking into account both the large temperature and electric-field dependence of the permittivity of SrTiO3 predict a confinement over a few nm for sheet carrier densities larger than ~6 10^13 cm-2. We discuss the experimental and simulations results in terms of a multi-band carrier system. Remarkably, the Fermi wavelength estimated from Hall measurements is ~16 nm, indicating that the electron gas in on the verge of two-dimensionality.
In recent years, striking discoveries have revealed that two-dimensional electron liquids (2DEL) confined at the interface between oxide band-insulators can be engineered to display a high mobility transport. The recognition that only few interfaces appear to suit hosting 2DEL is intriguing and challenges the understanding of these emerging properties not existing in bulk. Indeed, only the neutral TiO2 surface of (001)SrTiO3 has been shown to sustain 2DEL. We show that this restriction can be surpassed: (110) and (111) surfaces of SrTiO3 interfaced with epitaxial LaAlO3 layers, above a critical thickness, display 2DEL transport with mobilities similar to those of (001)SrTiO3. Moreover we show that epitaxial interfaces are not a prerequisite: conducting (110) interfaces with amorphous LaAlO3 and other oxides can also be prepared. These findings open a new perspective both for materials research and for elucidating the ultimate microscopic mechanism of carrier doping.
185 - Z. Q. Liu , L. Sun , Z. Huang 2014
We report that in unannealed LaAlO3/SrTiO3 (LAO/STO) heterostructures the critical thickness for the appearance of the two-dimensional electron gas can be less than 4 unit cell (uc), the interface is conducting even for STO substrates with mixed terminations and the low-temperature resistance upturn in LAO/STO heterostructures with thick LAO layers strongly depends on laser fluence. Our experimental results provide fundamental insights into the different roles played by oxygen vacancies and polarization catastrophe in the two-dimensional electron gas in crystalline LAO/STO heterostructures.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا