Do you want to publish a course? Click here

Single Cooper-pair pumping in the adiabatic limit and beyond

146   0   0.0 ( 0 )
 Added by Simone Gasparinetti
 Publication date 2012
  fields Physics
and research's language is English




Ask ChatGPT about the research

We demonstrate controlled pumping of Cooper pairs down to the level of a single pair per cycle, using an rf-driven Cooper-pair sluice. We also investigate the breakdown of the adiabatic dynamics in two different ways. By transferring many Cooper pairs at a time, we observe a crossover between pure Cooper-pair and mixed Cooper-pair-quasiparticle transport. By tuning the Josephson coupling that governs Cooper-pair tunneling, we characterize Landau-Zener transitions in our device. Our data are quantitatively accounted for by a simple model including decoherence effects.



rate research

Read More

Thermoelectric effect generating electricity from thermal gradient and vice versa appears in numerous generic applications. Recently, an original prospect of thermoelectricity arising from the nonlocal Cooper pair splitting (CPS) and the elastic co-tunneling (EC) in hybrid normal metal-superconductor-normal metal (NSN) structures was foreseen. Here we demonstrate experimentally the existence of non-local Seebeck effect in a graphene-based CPS device comprising two quantum dots connected to an aluminum superconductor and theoretically validate the observations. This non-local Seebeck effect offers an efficient tool for producing entangled electrons.
We have experimentally demonstrated pumping of Cooper pairs in a single-island mesoscopic structure. The island was connected to leads through SQUID (Superconducting Quantum Interference Device) loops. Synchronized flux and voltage signals were applied whereby the Josephson energies of the SQUIDs and the gate charge were tuned adiabatically. From the current-voltage characteristics one can see that the pumped current increases in 1e steps which is due to quasiparticle poisoning on the measurement time scale, but we argue that the transport of charge is due to Cooper pairs.
Periodically driven systems, which can be described by Floquet theory, have been proposed to show characteristic behavior that is distinct from static Hamiltonians. Floquet theory proposes to describe such periodically driven systems in terms of states that are indexed by a photon number in addition to the usual Hilbert space of the system. We propose a way to measure directly this additional Floquet degree of freedom by the measurement of the DC conductance of a single channel quantum point contact. Specifically, we show that a single channel wire augmented with a grating structure when irradiated with microwave radiation can show a DC conductance above the limit of one conductance quantum set by the Landauer formula. Another interesting feature of the proposed system is that being non-adiabatic in character, it can be used to pump a strong gate-voltage dependent photo-current even with linearly polarized radiation.
Controlled charge pumping in an AlGaAs/GaAs gated nanowire by single-parameter modulation is studied experimentally and theoretically. Transfer of integral multiples of the elementary charge per modulation cycle is clearly demonstrated. A simple theoretical model shows that such a quantized current can be generated via loading and unloading of a dynamic quasi-bound state. It demonstrates that non-adiabatic blockade of unwanted tunnel events can obliterate the requirement of having at least two phase-shifted periodic signals to realize quantized pumping. The simple configuration without multiple pumping signals might find wide application in metrological experiments and quantum electronics.
We study adiabatic charge transfer in a superconducting Cooper pair pump, focusing on the influence of current measurement on coherence. We investigate the limit where the Josephson coupling energy $E_J$ between the various parts of the system is small compared to the Coulomb charging energy $E_C$. In this case the charge transferred in a pumping cycle $Q_P sim 2e$, the charge of one Cooper pair: the main contribution is due to incoherent Cooper pair tunneling. We are particularly interested in the quantum correction to $Q_P$, which is due to coherent tunneling of pairs across the pump and which depends on the superconducting phase difference $phi_0$ between the electrodes: $1-Q_P/(2e) sim (E_J/E_C) cos phi_0$. A measurement of $Q_P$ tends to destroy the phase coherence. We first study an arbitrary measuring circuit and then specific examples and show that coherent Cooper pair transfer can in principle be detected using an inductively shunted ammeter.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا