We use the method of double pole QCD sum rule which is basically a fit with two exponentials of the correlation function, where we can extract the masses and decay constants of mesons as a function of the Borel mass. We apply this method to study the mesons: $rho(1S,2S)$, $psi(1S,2S)$, $Upsilon(1S,2S)$ and $psi_t(1S,2S)$. We also present predictions for the toponiuns masses $psi_t(1S,2S)$ of m(1S)=357 GeV and m(2S)=374 GeV.
The data for 9.3 million Upsilon(2S) and 20.9 million Upsilon(1S) taken with the CLEO III detector has been used to study the radiative population of states identified by their decay into twenty six different exclusive hadronic final states. In the Upsilon(2S) decays an enhancement is observed at a ~5 sigma level at a mass of 9974.6+-2.3(stat)+-2.1(syst) MeV. It is attributed to eta_b(2S), and corresponds to the Upsilon(2S) hyperfine splitting of 48.7+-2.3(stat)+-2.1(syst) MeV. In the Upsilon(1S) decays, the identification of eta_b(1S) is confirmed at a ~3 sigma level with M(eta_b(1S)) in agreement with its known value.
The inclusive $Upsilon(1S,2S,3S)$ photoproduction at the future Circular-Electron-Positron-Collider (CEPC) is studied based on the non-relativistic QCD (NRQCD). Including the contributions from both direct and resolved photons, we present different distributions for $Upsilon(1S,2S,3S)$ production and the results show there will be considerable events, which means that a well measurements on the $Upsilon$ photoprodution could be performed to further study on the heavy quarkonium physics at electron-positron collider in addition to hadron colliders. This supplement study is very important to clarify the current situation of the heavy quarkonium production mechanism.
The dipion transitions $Upsilon(2S,3S,4S) to Upsilon(1S,2S)pipi$ are systematically studied by considering the mechanisms of the hadronization of soft gluons, exchanging the bottomoniumlike $Z_b$ states, and the bottom-meson loops. The strong pion-pion final-state interaction, especially including the channel coupling to $Kbar{K}$ in the $S$-wave, is taken into account in a model-independent way using the dispersion theory. Through fitting to the available experimental data, we extract values of the transition chromopolarizabilities $|alpha_{Upsilon(mS)Upsilon(nS)}|$, which measure the chromoelectric couplings of the bottomonia with soft gluons. It is found that the $Z_b$ exchange has a slight impact on the extracted chromopolarizablity values, and the obtained $|alpha_{Upsilon(2S)Upsilon(1S)}|$ considering the $Z_b$ exchange is $(0.29pm 0.20)~text{GeV}^{-3}$. Our results could be useful in studying the interactions of bottomonium with light hadrons.
Using data samples of $102times10^6$ $Upsilon(1S)$ and $158times10^6$ $Upsilon(2S)$ events collected with the Belle detector, a first experimental search has been made for double-charmonium production in the exclusive decays $Upsilon(1S,2S)rightarrow J/psi(psi)+X$, where $X=eta_c$, $chi_{cJ} (J=~0,~1,~2)$, $eta_c(2S)$, $X(3940)$, and $X(4160)$. No significant signal is observed in the spectra of the mass recoiling against the reconstructed $J/psi$ or $psi$ except for the evidence of $chi_{c1}$ production with a significance of $4.6sigma$ for $Upsilon(1S)rightarrow J/psi+chi_{c1}$. The measured branching fraction $BR(Upsilon(1S)rightarrow J/psi+chi_{c1})$ is $(3.90pm1.21(rm stat.)pm0.23 (rm syst.))times10^{-6}$. The $90%$ confidence level upper limits on the branching fractions of the other modes having a significance of less than $3sigma$ are determined. These results are consistent with theoretical calculations using the nonrelativistic QCD factorization approach.
We report the observation of $Upsilon(2S)togammaeta_{b}(1S)$ decay based on analysis of the inclusive photon spectrum of $24.7$ fb$^{-1}$ of $e^+ e^-$ collisions at the $Upsilon(2S)$ center-of-mass energy collected with the Belle detector at the KEKB asymmetric-energy $e^+ e^-$ collider. We measure a branching fraction of $mathcal{B}(Upsilon(2S)togammaeta_{b}(1S))=(6.1^{+0.6+0.9}_{-0.7-0.6})times 10^{-4}$, and derive an $eta_{b}(1S)$ mass of $9394.8^{+2.7+4.5}_{-3.1-2.7}$ MeV/$c^{2}$, where the uncertainties are statistical and systematic, respectively. The significance of our measurement is greater than 7 standard deviations, constituting the first observation of this decay mode.
M. S. Maior de Sousa
,R. Rodrigues da Silva
.
(2012)
.
"The $rho(1S,2S)$, $psi(1S,2S)$, $Upsilon(1S,2S)$ and $psi_t(1S,2S)$ mesons in a double pole QCD Sum Rule"
.
Romulo Silva
هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا