Do you want to publish a course? Click here

Chromopolarizabilities of bottomonia from the $Upsilon(2S,3S,4S) to Upsilon(1S,2S)pipi$ transitions

86   0   0.0 ( 0 )
 Added by Yun-Hua Chen
 Publication date 2019
  fields
and research's language is English




Ask ChatGPT about the research

The dipion transitions $Upsilon(2S,3S,4S) to Upsilon(1S,2S)pipi$ are systematically studied by considering the mechanisms of the hadronization of soft gluons, exchanging the bottomoniumlike $Z_b$ states, and the bottom-meson loops. The strong pion-pion final-state interaction, especially including the channel coupling to $Kbar{K}$ in the $S$-wave, is taken into account in a model-independent way using the dispersion theory. Through fitting to the available experimental data, we extract values of the transition chromopolarizabilities $|alpha_{Upsilon(mS)Upsilon(nS)}|$, which measure the chromoelectric couplings of the bottomonia with soft gluons. It is found that the $Z_b$ exchange has a slight impact on the extracted chromopolarizablity values, and the obtained $|alpha_{Upsilon(2S)Upsilon(1S)}|$ considering the $Z_b$ exchange is $(0.29pm 0.20)~text{GeV}^{-3}$. Our results could be useful in studying the interactions of bottomonium with light hadrons.



rate research

Read More

We study the dipion transitions $Upsilon(4S) rightarrow Upsilon(nS) pi^+pi^-$ $(n=1,2)$. In particular, we consider the effects of the two intermediate bottomoniumlike exotic states $Z_b(10610)$ and $Z_b(10650)$ as well as bottom meson loops. The strong pion-pion final-state interactions, especially including channel coupling to $Kbar{K}$ in the $S$-wave, are taken into account model-independently by using dispersion theory. Based on a nonrelativistic effective field theory we find that the contribution from the bottom meson loops is comparable to those from the chiral contact terms and the $Z_b$-exchange terms. For the $Upsilon(4S) rightarrow Upsilon(2S) pi^+pi^-$ decay, the result shows that including the effects of the $Z_b$-exchange and the bottom meson loops can naturally reproduce the two-hump behavior of the $pipi$ mass spectra. Future angular distribution data are decisive for the identification of different production mechanisms. For the $Upsilon(4S) rightarrow Upsilon(1S) pi^+pi^-$ decay, we show that there is a narrow dip around 1 GeV in the $pipi$ invariant mass distribution, caused by the final-state interactions. The distribution is clearly different from that in similar transitions from lower $Upsilon$ states, and needs to be verified by future data with high statistics. Also we predict the decay width and the dikaon mass distribution of the $Upsilon(4S) rightarrow Upsilon(1S) K^+ K^-$ process.
64 - M. Artuso , et al 2004
We have studied the inclusive photon spectra in Upsilon(2S) and Upsilon(3S) decays using a large statistics data sample obtained with the CLEO III detector. We present the most precise measurements of electric dipole (E1) photon transition rates and photon energies for Upsilon(2S)->gamma chi_bJ(1P) and Upsilon(3S)->gamma chi_bJ(2P) J=0,1,2. We measure the rate for a rare E1 transition Upsilon(3S)->gamma chi_b0(1P) for the first time. We also set upper limits on the rates for the hindered magnetic dipole (M1) transitions to the eta_b(1S) and eta_b(2S) states.
The inclusive $Upsilon(1S,2S,3S)$ photoproduction at the future Circular-Electron-Positron-Collider (CEPC) is studied based on the non-relativistic QCD (NRQCD). Including the contributions from both direct and resolved photons, we present different distributions for $Upsilon(1S,2S,3S)$ production and the results show there will be considerable events, which means that a well measurements on the $Upsilon$ photoprodution could be performed to further study on the heavy quarkonium physics at electron-positron collider in addition to hadron colliders. This supplement study is very important to clarify the current situation of the heavy quarkonium production mechanism.
Using data collected in the Belle experiment at the KEKB asymmetric-energy $e^+e^-$ collider we search for transitions $Upsilon(4S) rightarrow eta_b(1S)omega$, $Upsilon(5S) rightarrow eta_b(1S)omega$ and $Upsilon(5S) rightarrow eta_b(2S)omega$. No significant signals are observed and we set 90% confidence level upper limits on the corresponding visible cross sections: $0.2 ~textrm{pb}, 0.4 ~textrm{pb}$ and $1.9 ~textrm{pb}$, respectively.
Within the framework of dispersion theory, we analyze the dipion transitions between the lightest $Upsilon$ states, $Upsilon(nS) rightarrow Upsilon(mS) pipi$ with $m < n leq 3$. In particular, we consider the possible effects of two intermediate bottomoniumlike exotic states $Z_b(10610)$ and $Z_b(10650)$. The $pipi$ rescattering effects are taken into account in a model-independent way using dispersion theory. We confirm that matching the dispersive representation to the leading chiral amplitude alone cannot reproduce the peculiar two-peak $pipi$ mass spectrum of the decay $Upsilon(3S) rightarrow Upsilon(1S) pipi$. The existence of the bottomoniumlike $Z_b$ states can naturally explain this anomaly. We also point out the necessity of a proper extraction of the coupling strengths for the $Z_b$ states to $Upsilon(nS)pi$, which is only possible if a Flatte-like parametrization is used in the data analysis for the $Z_b$ states.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا