Do you want to publish a course? Click here

Quantum disorder in the spatially completely anisotropic triangular lattice I: Heisenberg $S=1/2$ antiferromagnet

230   0   0.0 ( 0 )
 Added by Philipp Hauke
 Publication date 2012
  fields Physics
and research's language is English
 Authors Philipp Hauke




Ask ChatGPT about the research

Spin liquids occuring in 2D frustrated spin systems were initially assumed to appear at strongest frustration, but evidence grows that they more likely intervene at transitions between two different types of order. To identify if this is more general, we here analyze a generalization of the spatially anisotropic triangular lattice (SATL) with antiferromagnetic Heisenberg interactions, the spatially emph{completely} anisotropic triangular lattice (SCATL). Using Takahashis modified spin-wave theory, complemented by exact diagonalizations, we find indications that indeed different kinds of order are always separated by disordered phases. Our results further suggest that two gapped non-magnetic phases, identified as distinct in the SATL, are actually continuously connected via the additional anisotropy of the SCATL. Finally, measurements on several materials found magnetic long-range order where calculations on the SATL predict disordered behavior. Our results suggest a simple explanation through the additional anisotropy of the SCATL, which locates the corresponding parameter values in ordered phases. The studied model might therefore not only yield fundamental insight into quantum disordered phases, but should also be relevant for experiments on the quest for spin liquids.



rate research

Read More

140 - Philipp Hauke 2012
Spin liquids occuring in 2D frustrated spin systems were initially assumed to appear at strongest frustration, but evidence grows that they more likely intervene at transitions between two different types of order. To identify if this is more general, we here analyze a generalization of the spatially anisotropic triangular lattice (SATL) with antiferromagnetic XY interactions, the spatially emph{completely} anisotropic triangular lattice (SCATL). This model can be implemented in experiments with trapped ions, ultra-small Josephson junctions, or ultracold atoms in optical lattices. Using Takahashis modified spin-wave theory, we find indications that indeed two different kinds of order are always separated by phases without magnetic long-range order. Our results further suggest that two gapped, magnetically-disordered phases, identified as distinct in the SATL, are actually continuously connected via the additional anisotropy of the SCATL. As these results indicate, this additional anisotropy -- allowing to approach quantum-disordered phases from different angles -- can give fundamental insight into the nature of quantum disordered phases. We complement our results by exact diagonalizations, which also indicate that in part of the gapped non-magnetic phase, chiral long-range correlations could survive.
We determine dynamical response functions of the S=1/2 Heisenberg quantum antiferromagnet on the kagome lattice based on large-scale exact diagonalizations combined with a continued fraction technique. The dynamical spin structure factor has important spectral weight predominantly along the boundary of the extended Brillouin zone and energy scans reveal broad response extending over a range of 2 sim 3J concomitant with pronounced intensity at lowest available energies. Dispersive features are largely absent. Dynamical singlet correlations -- which are relevant for inelastic light probes -- reveal a similar broad response, with a high intensity at low frequencies omega/J lesssim 0.2J. These low energy singlet excitations do however not seem to favor a specific valence bond crystal, but instead spread over many symmetry allowed eigenstates.
125 - Lei Chen , Dai-Wei Qu , Han Li 2018
The anomalous thermodynamic properties of the paradigmatic frustrated spin-1/2 triangular lattice Heisenberg antiferromagnet (TLH) has remained an open topic of research over decades, both experimentally and theoretically. Here we further the theoretical understanding based on the recently developed, powerful exponential tensor renormalization group (XTRG) method on cylinders and stripes in a quasi one-dimensional (1D) setup, as well as a tensor product operator approach directly in 2D. The observed thermal properties of the TLH are in excellent agreement with two recent experimental measurements on the virtually ideal TLH material Ba$_8$CoNb$_6$O$_{24}$. Remarkably, our numerical simulations reveal two crossover temperature scales, at $T_l/J sim 0.20$ and $T_h/Jsim 0.55$, with $J$ the Heisenberg exchange coupling, which are also confirmed by a more careful inspection of the experimental data. We propose that in the intermediate regime between the low-temperature scale $T_l$ and the higher one $T_h$, the gapped roton-like excitations are activated with a strong chiral component and a large contribution to thermal entropies, which suppress the incipient 120$^circ$ order that emerges for temperatures below $T_l$.
We investigate the spin-1/2 Heisenberg model on a rectangular lattice, using the Gutzwiller projected variational wave function known as the staggered flux state. Using Monte Carlo techniques, the variational parameters and static spin-structure factor for different coupling anisotropies $gamma=J_y/J_x$ are calculated. We observe a gradual evolution of the ground state energy towards a value which is very close to the 1D estimate provided by the Bethe ansatz and a good agreement between the finite size scaling of the energies. The spin-spin correlation functions exhibit a power-law decay with varying exponents for different anisotropies. Though the lack of Neel order makes the staggered flux state energetically unfavorable in the symmetric case $gamma=1$, it appears to capture the essence of the system close to 1D. Hence we believe that the staggered flux state provides an interesting starting point to explore the crossover from quantum disordered chains to the Neel ordered 2D square lattices.
167 - R. Rawl , L. Ge , H. Agrawal 2016
The perovskite Ba8CoNb6O24 comprises equilateral effective spin-1/2 Co2+ triangular layers separated by six non-magnetic layers. Susceptibility, specific heat and neutron scattering measurements combined with high-temperature series expansions and spin-wave calculations confirm that Ba8CoNb6O24 is basically a twodimensional (2D) magnet with no detectable spin anisotropy and no long-range magnetic ordering down to 0.06 K. In other words, Ba8CoNb6O24 is very close to be a realization of the paradigmatic spin-1/2 triangular Heisenberg model, which is not expected to exhibit symmetry breaking at finite temperature according to the Mermin and Wagner theorem.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا