Do you want to publish a course? Click here

Quantum disorder in the spatially completely anisotropic triangular lattice II: frustrated hard-core bosons

139   0   0.0 ( 0 )
 Added by Philipp Hauke
 Publication date 2012
  fields Physics
and research's language is English
 Authors Philipp Hauke




Ask ChatGPT about the research

Spin liquids occuring in 2D frustrated spin systems were initially assumed to appear at strongest frustration, but evidence grows that they more likely intervene at transitions between two different types of order. To identify if this is more general, we here analyze a generalization of the spatially anisotropic triangular lattice (SATL) with antiferromagnetic XY interactions, the spatially emph{completely} anisotropic triangular lattice (SCATL). This model can be implemented in experiments with trapped ions, ultra-small Josephson junctions, or ultracold atoms in optical lattices. Using Takahashis modified spin-wave theory, we find indications that indeed two different kinds of order are always separated by phases without magnetic long-range order. Our results further suggest that two gapped, magnetically-disordered phases, identified as distinct in the SATL, are actually continuously connected via the additional anisotropy of the SCATL. As these results indicate, this additional anisotropy -- allowing to approach quantum-disordered phases from different angles -- can give fundamental insight into the nature of quantum disordered phases. We complement our results by exact diagonalizations, which also indicate that in part of the gapped non-magnetic phase, chiral long-range correlations could survive.



rate research

Read More

226 - Philipp Hauke 2012
Spin liquids occuring in 2D frustrated spin systems were initially assumed to appear at strongest frustration, but evidence grows that they more likely intervene at transitions between two different types of order. To identify if this is more general, we here analyze a generalization of the spatially anisotropic triangular lattice (SATL) with antiferromagnetic Heisenberg interactions, the spatially emph{completely} anisotropic triangular lattice (SCATL). Using Takahashis modified spin-wave theory, complemented by exact diagonalizations, we find indications that indeed different kinds of order are always separated by disordered phases. Our results further suggest that two gapped non-magnetic phases, identified as distinct in the SATL, are actually continuously connected via the additional anisotropy of the SCATL. Finally, measurements on several materials found magnetic long-range order where calculations on the SATL predict disordered behavior. Our results suggest a simple explanation through the additional anisotropy of the SCATL, which locates the corresponding parameter values in ordered phases. The studied model might therefore not only yield fundamental insight into quantum disordered phases, but should also be relevant for experiments on the quest for spin liquids.
Long-range order in quantum many-body systems is usually associated with equilibrium situations. Here, we experimentally investigate the quasicondensation of strongly-interacting bosons at finite momenta in a far-from-equilibrium case. We prepare an inhomogeneous initial state consisting of one-dimensional Mott insulators in the center of otherwise empty one-dimensional chains in an optical lattice with a lattice constant $d$. After suddenly quenching the trapping potential to zero, we observe the onset of coherence in spontaneously forming quasicondensates in the lattice. Remarkably, the emerging phase order differs from the ground-state order and is characterized by peaks at finite momenta $pm (pi/2) (hbar / d)$ in the momentum distribution function.
We propose to realize the anisotropic triangular-lattice Bose-Hubbard model with positive tunneling matrix elements by using ultracold atoms in an optical lattice dressed by a fast lattice oscillation. This model exhibits frustrated antiferromagnetism at experimentally feasible temperatures; it interpolates between a classical rotor model for weak interaction, and a quantum spin-1/2 $XY$-model in the limit of hard-core bosons. This allows to explore experimentally gapped spin liquid phases predicted recently [Schmied et al., New J. Phys. {bf 10}, 045017 (2008)].
117 - M. Malakar , S. Ray , S. Sinha 2020
Motivated by the realization of Bose-Einstein condensates (BEC) in non-cubic lattices, in this work we study the phases and collective excitation of bosons with nearest neighbor interaction in a triangular lattice at finite temperature, using mean field (MF) and cluster mean field (CMF) theory. We compute the finite temperature phase diagram both for hardcore and softcore bosons, as well analyze the effect of correlation arising due to lattice frustration and interaction systematically using CMF method. A semi-analytic estimate of the transition temperatures between different phases are derived within the framework of MF Landau theory, particularly for hardcore bosons. Apart from the usual phases such as density waves (DW) and superfluid (SF), we also characterize different supersolids (SS). These phases and their transitions at finite temperature are identified from the collective modes. The low lying excitations, particularly Goldstone and Higgs modes of the supersolid can be detected in the ongoing cold atom experiments.
We numerically demonstrate that a supersolid phase exists in a frustrated hard-core boson system on a triangular lattice over a wide range of interaction strength. In the infinite repulsion (Ising) limit, we establish a mapping to the same problem with unfrustrated hopping, which connects the supersolid to the known results in that case. The weak superfluidity can be destroyed or strongly enhanced by a next nearest neighbor hopping term, which provides valuable information for experimental realization of a supersolid phase on optical lattice.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا