Do you want to publish a course? Click here

Complex Organic Molecules at High Spatial Resolution Toward Orion-KL I: Spatial Scales

278   0   0.0 ( 0 )
 Added by Douglas Friedel
 Publication date 2012
  fields Physics
and research's language is English




Ask ChatGPT about the research

Here we present high spatial resolution (<1 arcsecond) observations of molecular emission in Orion-KL conducted using the Combined Array for Research in Millimeter-Wave Astronomy (CARMA). This work was motivated by recent millimeter continuum imaging studies of this region conducted at a similarly high spatial resolution, which revealed that the bulk of the emission arises from numerous compact sources, rather than the larger-scale extended structures typically associated with the Orion Hot Core and Compact Ridge. Given that the spatial extent of molecular emission greatly affects the determination of molecular abundances, it is important to determine the true spatial scale for complex molecules in this region. Additionally, it has recently been suggested that the relative spatial distributions of complex molecules in a source might give insight into the chemical mechanisms that drive complex chemistry in star-forming regions. In order to begin to address these issues, this study seeks to determine the spatial distributions of ethyl cyanide [C2H5CN], dimethyl ether [(CH3)2O], methyl formate [HCOOCH3], formic acid [HCOOH], acetone [(CH3)2CO], SiO, methanol [CH3OH], and methyl cyanide [CH3CN] in Orion-KL at lambda = 3 mm. We find that for all observed molecules, the molecular emission arises from multiple components of the cloud that include a range of spatial scales and physical conditions. Here we present the results of these observations and discuss the implications for studies of complex molecules in star-forming regions.



rate research

Read More

It has recently been suggested that chemical processing can shape the spatial distributions of complex molecules in the Orion-KL region and lead to the nitrogen-oxygen chemical differentiation seen in previous observations of this source. Orion-KL is a very dynamic region, and it is therefore also possible that physical conditions can shape the molecular distributions in this source. Only high spatial resolution observations can provide the information needed to disentangle these effects. Here we present millimeter imaging studies of Orion-KL at various beam sizes using the Combined Array for Research in Millimeter-Wave Astronomy (CARMA). We compare molecular images with high spatial resolution images that trace the temperature, continuum column density, and kinematics of the source in order to investigate the effects of physical conditions on molecular distributions. These observations were conducted at lambda = 3 mm and included transitions of ethyl cyanide [C2H5CN], methyl formate [HCOOCH3], formic acid [HCOOH], acetone [(CH3)2CO], SiO, and methanol [CH3OH]. We find differences in the molecular distributions as a function of each of these factors. These results indicate that acetone may be produced by chemical processing and is robust to large changes in physical conditions, while formic acid is readily destroyed by gas-phase processing in warm and dense regions. We also find that while the spatial distributions of ethyl cyanide and methyl formate are not distinct as is suggested by the concept of chemical differentiation, local physical conditions shape the small-scale emission structure for these species.
Recent interferometric observations have called into question the traditional view of the Orion-KL region, which displays one of the most well-defined cases of chemical differentiation in a star-forming region. Previous, lower-resolution images of Orion-KL show emission signatures for oxygen-bearing organic molecules toward the Orion Compact Ridge, and emission for nitrogen-bearing organic molecules toward the Orion Hot Core. However, more recent observations at higher spatial resolution indicate that the bulk of the molecular emission is arising from many smaller, compact clumps that are spatially distinct from the traditional Hot Core and Compact Ridge sources. It is this type of observational information that is critical for guiding astrochemical models, as the spatial distribution of molecules and their relation to energetic sources will govern the chemical mechanisms at play in star-forming regions. We have conducted millimeter imaging studies of Orion-KL with various beam sizes using CARMA in order to investigate the continuum structure. These lambda;=3mm observations have synthesized beam sizes of ~0.5-5.0. These observations reveal the complex continuum structure of this region, which stands in sharp contrast to the previous structural models assumed for Orion-KL based on lower spatial resolution images. The new results indicate that the spatial scaling previously used in determination of molecular abundances for this region are in need of complete revision. Here we present the results of the continuum observations, discuss the sizes and structures of the detected sources, and suggest an observational strategy for determining the proper spatial scaling to accurately determine molecular abundances in the Orion-KL region.
We summarize some of the compelling new scientific opportunities for understanding stars and stellar systems that can be enabled by sub-milliarcsec (sub-mas) angular resolution, UV-Optical spectral imaging observations, which can reveal the details of the many dynamic processes (e.g., evolving magnetic fields, accretion, convection, shocks, pulsations, winds, and jets) that affect stellar formation, structure, and evolution. These observations can only be provided by long-baseline interferometers or sparse aperture telescopes in space, since the aperture diameters required are in excess of 500 m (a regime in which monolithic or segmented designs are not and will not be feasible) and since they require observations at wavelengths (UV) not accessible from the ground. Such observational capabilities would enable tremendous gains in our understanding of the individual stars and stellar systems that are the building blocks of our Universe and which serve as the hosts for life throughout the Cosmos.
Complex organic molecules (COMs) have been detected in a few Class 0 protostars but their origin is not well understood. Going beyond studies of individual objects, we want to investigate the origin of COMs in young protostars on a statistical basis. We use the CALYPSO survey performed with the IRAM PdBI to search for COMs at high angular resolution in a sample of 26 solar-type protostars, including 22 Class 0 and four Class I objects. Methanol is detected in 12 sources and tentatively in one source, which represents half of the sample. Eight sources (30%) have detections of at least three COMs. We find a strong chemical differentiation in multiple systems with five systems having one component with at least three COMs detected but the other component devoid of COM emission. The internal luminosity is found to be the source parameter impacting the most the COM chemical composition of the sources, while there is no obvious correlation between the detection of COM emission and that of a disk-like structure. A canonical hot-corino origin may explain the COM emission in four sources, an accretion-shock origin in two or possibly three sources, and an outflow origin in three sources. The CALYPSO sources with COM detections can be classified into three groups on the basis of the abundances of oxygen-bearing molecules, cyanides, and CHO-bearing molecules. These chemical groups correlate neither with the COM origin scenarii, nor with the evolutionary status of the sources if we take the ratio of envelope mass to internal luminosity as an evolutionary tracer. We find strong correlations between molecules that are a priori not related chemically (for instance methanol and methyl cyanide), implying that the existence of a correlation does not imply a chemical link. [abridged]
We present high resolution, Combined Array for Research in Millimeter-Wave Astronomy (CARMA), $lambda$=1mm observations of several molecular species toward Orion-KL. These are the highest spatial and spectral resolution 1mm observations of these molecules to date. Our observations show that ethyl cyanide [C$_2$H$_5$CN] and vinyl cyanide [C$_2$H$_3$CN] originate from multiple cores near the Orion hot core and IRc7. Additionally we show that dimethyl ether [(CH$_3$)$_2$O] and methyl formate [HCOOCH$_3$] originate from IRc5 and IRc6 and that acetone [(CH$_3$)$_2$CO] originates only from areas where both N-bearing and O-bearing species are present.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا