Do you want to publish a course? Click here

A newly discovered VHE gamma-ray PWN candidate around PSR J1459-60

104   0   0.0 ( 0 )
 Added by Raquel De los Reyes
 Publication date 2012
  fields Physics
and research's language is English




Ask ChatGPT about the research

Observations of the Galactic Plane performed by the H.E.S.S. telescope array have revealed a significant excess at very-high-energies (VHE; E>0.1 TeV) from the direction of PSR J1459-60, a rather old gamma-ray pulsar (64 kyr) with a spindown energy of ~10^36 erg/s, discovered by the Fermi/LAT satellite in high-energy (HE) gamma-rays. The X-ray pulsar counterpart has been recently detected using the Suzaku satellite. In this contribution, we present the discovery of a new VHE gamma-ray source, including morphological and spectral analyses. Its association with the gamma-ray pulsar in a PWN scenario will be discussed.



rate research

Read More

In the survey of the Galactic plane conducted with H.E.S.S., many VHE gamma-ray sources were discovered for which no clear counterpart at other wavelengths could be identified. HESS J1731-347 initially belonged to this source class. Recently however, the new shell-type supernova remnant (SNR) G353.6-0.7 was discovered in radio data, positionally coinciding with the VHE source. We will present new X-ray observations that cover a fraction of the VHE source, revealing nonthermal emission that most likely can be interpreted as synchrotron emission from high-energy electrons. This, along with a larger H.E.S.S. data set which comprises more than twice the observation time used in the discovery paper, allows us to test whether the VHE source may indeed be attributed to shell-type emission from that new SNR. If true, this would make HESS J1731-347 a new object in the small but growing class of non-thermal shell-type supernova remnants with VHE emission.
We present the discovery, classification, and radio-to-X-ray follow-up observations of iPTF17cw, a broad-lined (BL) type Ic supernova (SN) discovered by the intermediate Palomar Transient Factory (iPTF). Although unrelated to the gravitational wave trigger, this SN was discovered as a happy by-product of the extensive observational campaign dedicated to the follow-up of Advanced LIGO event GW170104. The spectroscopic properties and inferred peak bolometric luminosity of iPTF17cw are most similar to the gamma-ray burst (GRB) associated SN 1998bw, while the shape of the r-band light curve is most similar to that of the relativistic SN 2009bb. Karl G. Jansky Very Large Array (VLA) observations of the iPTF17cw field reveal a radio counterpart about 10 times less luminous than SN 1998bw, and with peak radio luminosity comparable to that of SN 2006aj/GRB 060218 and SN 2010bh/GRB 100316D. Our radio observations of iPTF17cw imply a relativistically expanding outflow. However, further late-time observations with the VLA in its most extended configuration are needed to confirm fading of iPTF radio counterpart at all frequencies. X-ray observations carried out with Chandra reveal the presence of an X-ray counterpart with luminosity similar to that of SN 2010bh/GRB 100316D. Searching the Fermi catalog for possible gamma-rays reveals that GRB 161228B is spatially and temporally compatible with iPTF17cw. The similarity to SN 1998bw and SN 2009bb, the radio and X-ray detections, and the potential association with GRB 161228B, all point to iPTF17cw being a new candidate member of the rare sample of optically-discovered engine-driven BL-Ic SNe associated with relativistic ejecta.
We examine changes of the $gamma$-ray intensity observed from the direction of the binary system PSR B1259-63/LS 2883 during campaigns around its three periastron passages. A simple and straightforward method is applied to the published data obtained with the Imaging Atmospheric Cherenkov Technique. Regardless of many issues of the detection process, the method works only with numbers of very high energetic photons registered in the specified regions. Within the realm of this scheme, we recognized changes attributable to the variations of the intrinsic source activity at high levels of significance.
75 - R. P. Mignani 2016
We carried out deep optical observations of the middle-aged $gamma$-ray pulsar PSR J1741-2054 with the Very Large Telescope (VLT). We identified two objects, of magnitudes $m_v=23.10pm0.05$ and $m_v=25.32pm0.08$, at positions consistent with the very accurate Chandra coordinates of the pulsar, the faintest of which is more likely to be its counterpart. From the VLT images we also detected the known bow-shock nebula around PSR J1741-2054. The nebula is displaced by $sim 0farcs9$ (at the $3sigma$ confidence level) with respect to its position measured in archival data, showing that the shock propagates in the interstellar medium consistently with the pulsar proper motion. Finally, we could not find evidence of large-scale extended optical emission associated with the pulsar wind nebula detected by Chandra, down to a surface brightness limit of $sim 28.1$ magnitudes arcsec$^{-2}$. Future observations are needed to confirm the optical identification of PSR J1741-2054 and characterise the spectrum of its counterpart.
There are several types of Galactic sources that can potentially accelerate charged particles up to GeV and TeV energies. We present here the results of our observations of the source class of gamma-ray binaries and the subclass of binary systems known as novae with the MAGIC telescopes. Up to now novae were only detected in the GeV range. This emission can be interpreted in terms of an inverse Compton process of electrons accelerated in a shock. In this case it is expected that protons in the same conditions can be accelerated to much higher energies. Consequently they may produce a second component in the gamma-ray spectrum at TeV energies. The focus here lies on the four sources: nova V339 Del, SS433, LS I +61 303 and V404 Cygni. The binary system LS I +61 303 was observed in a long-term monitoring campaign for 8 years. We show the newest results on our search for superorbital variability, also in context with contemporaneous optical observations. Furthermore, we present the observations of the only super-critical accretion system known in our galaxy: SS433. Finally, the results of the follow-up observations of the microquasar V404 Cygni during a series of outbursts in the X-ray band and the ones of the nova V339 Del will be discussed in these proceedings.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا