Do you want to publish a course? Click here

X- and gamma-ray studies of HESS J1731-347 coincident with a newly discovered SNR

118   0   0.0 ( 0 )
 Added by Fabio Acero Dr
 Publication date 2009
  fields Physics
and research's language is English




Ask ChatGPT about the research

In the survey of the Galactic plane conducted with H.E.S.S., many VHE gamma-ray sources were discovered for which no clear counterpart at other wavelengths could be identified. HESS J1731-347 initially belonged to this source class. Recently however, the new shell-type supernova remnant (SNR) G353.6-0.7 was discovered in radio data, positionally coinciding with the VHE source. We will present new X-ray observations that cover a fraction of the VHE source, revealing nonthermal emission that most likely can be interpreted as synchrotron emission from high-energy electrons. This, along with a larger H.E.S.S. data set which comprises more than twice the observation time used in the discovery paper, allows us to test whether the VHE source may indeed be attributed to shell-type emission from that new SNR. If true, this would make HESS J1731-347 a new object in the small but growing class of non-thermal shell-type supernova remnants with VHE emission.



rate research

Read More

The recent discovery of the radio shell-type supernova remnant (SNR), G353.6-0.7, in spatial coincidence with the unidentified TeV source HESS J1731-347 has motivated further observations of the source with the High Energy Stereoscopic System (H.E.S.S.) Cherenkov telescope array to test a possible association of the gamma-ray emission with the SNR. With a total of 59 hours of observation, representing about four times the initial exposure available in the discovery paper of HESS J1731-347, the gamma-ray morphology is investigated and compared with the radio morphology. An estimate of the distance is derived by comparing the interstellar absorption derived from X-rays and the one obtained from 12CO and HI observations. The deeper gamma-ray observation of the source has revealed a large shell-type structure with similar position and extension (r~0.25{deg}) as the radio SNR, thus confirming their association. By accounting for the H.E.S.S. angular resolution and projection effects within a simple shell model, the radial profile is compatible with a thin, spatially unresolved, rim. Together with RX J1713.7-3946, RX J0852.0-4622 and SN 1006, HESS J1731-347 is now the fourth SNR with a significant shell morphology at TeV energies. The derived lower limit on the distance of the SNR of 3.2 kpc is used together with radio and X-ray data to discuss the possible origin of the gamma-ray emission, either via inverse Compton scattering of electrons or the decay of neutral pions resulting from proton-proton interaction.
The supernova remnant (SNR) HESS J1731-347 is a young SNR which displays a non-thermal X-ray and TeV shell structure. A molecular cloud at a distance of 3.2 kpc is spatially coincident with the western part of the SNR, and it is likely hit by the SNR. The X-ray emission from this part of the shell is much lower than from the rest of the SNR. Moreover, a compact GeV emission region coincident with the cloud has been detected with a soft spectrum. These observations seem to imply a shock-cloud collision scenario at this area, where the stalled shock can no longer accelerate super-TeV electrons or maintain strong magnetic turbulence downstream, while the GeV cosmic rays (CRs) are released through this stalled shock. To test this hypothesis, we have performed a detailed Fermi-LAT reanalysis of the HESS J1731-347 region with over 9 years of data. We find that the compact GeV emission region displays a spectral power-law index of -2.4, whereas the GeV emission from the rest of the SNR (excluding the cloud region) has an index of -1.8. A hadronic model involving a shock-cloud collision scenario is built to explain the -ray emission from this area. It consists of three CR sources: run-away super-TeV CRs that have escaped from the fast shock, leaked GeV CRs from the stalled shock, and the local CR sea. The X-ray and -ray emission of the SNR excluding the shock-cloud interaction region is explained in a one-zone leptonic model. Our shock-cloud collision model explains well the GeV-TeV observations from both cloud regions around HESS J1731-347, i.e. from the cloud in contact with the SNR and from the more distant cloud which is coincident with the nearby TeV source HESS J1729-345. We find however that the leaked GeV CRs from the shock-cloud collision do not necessarily dominate the GeV emission from the clouds, due to a comparable contribution from the local CR sea.
The results of Mopra molecular spectral line observations towards the supernova remnant HESSJ1731-347 (G353.6-0.7) and the unidentified gamma-ray source HESSJ1729-345 are presented. Dense molecular gas in three different velocity-bands (corresponding to three Galactic arms) are investigated using the CS(1-0) line. The CS-traced component provides information about the dense target material in a hadronic scenario for gamma-ray production (cosmic rays interacting with gas) and an understanding of the dynamics. Furthermore, the effects of cosmic ray diffusion into dense gas may alter the gamma-ray spectrum to cause a flattening of spectra towards such regions. Dense molecular gas mass at a level of ~10^5 Mo was revealed in this survey, with mass of the order of ~10^3 Mo towards HESSJ1729-345 in each coincident Galactic arm, but no significant detection of dense molecular gas towards HESSJ1731-347 at the currently-preferred distance of ~5.2-6.2 kpc was discovered.
261 - T.Fukuda , S.Yoshiike , H.Sano 2014
HESS J1731-347 (G353.6-0.7) is one of the TeV gamma-ray SNRs which shows the shell-like morphology. We have made a new analysis of the interstellar protons toward the SNR by using both the 12CO(J=1-0) and HI datasets. The results indicate that the TeV gamma-ray shell shows significant spatial correlation with the interstellar protons at a velocity range from -90 km/s to -75 km/s, and the distance corresponding to the velocity range is ~5.2 kpc, a factor of 2 larger than the previous figure 3 kpc. The total mass of the interstellar protons is estimated to be 6.4x10^4 M_sun, 25 % of which is atomic gas. We have identified the cold HI gas observed as self-absorption which shows significant correspondence with the northeastern gamma-ray peak. While the good correspondence between the interstellar protons and TeV gamma-rays in the north of the SNR lends support to the hadronic scenario for the TeV gamma-rays, the southern part of the shell shows a break in the correspondence; in particular, the southwestern rim of the SNR shell shows a significant decrease of the interstellar protons by a factor of 2. We argue that this discrepancy can be explained as due to leptonic gamma-rays, because this region well coincides with the bright shell which emit non-thermal radio continuum emission and non-thermal X-rays, suggesting that the gamma-rays of HESS J1713-347 consist of both the hadronic and leptonic components. The leptonic contribution then corresponds to ~20 % of the total gamma-rays. The total energy of cosmic-ray protons is estimated to be 10^49 erg for the gamma-ray energy range of 1 GeV - 100 TeV by assuming that 80 % of the total gamma-ray is of the hadronic origin.
HESS J1731$-$347 a.k.a. SNR G353.6$-$0.7 is one of the five known shell-type supernova remnants (SNRs) emitting in the very high energy (VHE, Energy $>$ 0.1 TeV) $gamma$-ray domain. We observed this TeV SNR with the Giant Metrewave Radio Telescope (GMRT) in 1390, 610 and 325 MHz bands. In this paper, we report the discovery of 325 and 610 MHz radio counterparts of the SNR HESS J1731$-$347 with the GMRT. Various filaments of the SNR are clearly seen in the 325 and 610 MHz bands. However, the faintest feature in the radio bands corresponds to the peak in VHE emission. We explain this anti-correlation in terms of a possible leptonic origin of the observed VHE $gamma$-ray emission. We determine the spectral indices of the bright individual filaments, which were detected in both the 610 and the 325 MHz bands. Our values range from $-$1.11 to $-$0.15, consistent with the non-thermal radio emission. We also report a possible radio counterpart of a nearby TeV source HESS J1729$-$345 from the 843 MHz Molonglo Galactic Plane Survey and the 1.4 GHz Southern Galactic Plane Survey maps. The positive radio spectral index of this possible counterpart suggests a thermal origin of the radio emission of this nearby TeV source.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا