No Arabic abstract
We carried out deep optical observations of the middle-aged $gamma$-ray pulsar PSR J1741-2054 with the Very Large Telescope (VLT). We identified two objects, of magnitudes $m_v=23.10pm0.05$ and $m_v=25.32pm0.08$, at positions consistent with the very accurate Chandra coordinates of the pulsar, the faintest of which is more likely to be its counterpart. From the VLT images we also detected the known bow-shock nebula around PSR J1741-2054. The nebula is displaced by $sim 0farcs9$ (at the $3sigma$ confidence level) with respect to its position measured in archival data, showing that the shock propagates in the interstellar medium consistently with the pulsar proper motion. Finally, we could not find evidence of large-scale extended optical emission associated with the pulsar wind nebula detected by Chandra, down to a surface brightness limit of $sim 28.1$ magnitudes arcsec$^{-2}$. Future observations are needed to confirm the optical identification of PSR J1741-2054 and characterise the spectrum of its counterpart.
We obtained six observations of PSR J1741-2054 using the $Chandra$ ACIS-S detector totaling $sim$300 ks. By registering this new epoch of observations to an archival observation taken 3.2 years earlier using X-ray point sources in the field of view, we have measured the pulsar proper motion at $mu =109 pm 10 {rm mas yr}^{-1}$ in a direction consistent with the symmetry axis of the observed H$alpha$ nebula. We investigated the inferred past trajectory of the pulsar but find no compelling association with OB associations in which the progenitor may have originated. We confirm previous measurements of the pulsar spectrum as an absorbed power law with photon index $Gamma$=2.68$pm$0.04, plus a blackbody with an emission radius of (4.5$^{+3.2}_{-2.5})d_{0.38}$ km, for a DM-estimated distance of $0.38d_{0.38}$ kpc and a temperature of $61.7pm3.0$ eV. Emission from the compact nebula is well described by an absorbed power law model with a photon index of $Gamma$ = 1.67$pm$0.06, while the diffuse emission seen as a trail extending northeast of the pulsar shows no evidence of synchrotron cooling. We also applied image deconvolution techniques to search for small-scale structures in the immediate vicinity of the pulsar, but found no conclusive evidence for such structures.
The Large Area Telescope (LAT) onboard the Fermi satellite opened a new era for pulsar astronomy, detecting gamma-ray pulsations from more than 60 pulsars, ~40% of which are not seen at radio wavelengths. One of the most interesting sources discovered by LAT is PSR J0357+3205, a radio-quiet, middle-aged (tau_C ~0.5 Myr) pulsar standing out for its very low spin-down luminosity (Erot ~6x10^33 erg/s), indeed the lowest among non-recycled gamma-ray pulsars. A deep X-ray observation with Chandra (0.5-10 keV), coupled with sensitive optical/infrared ground-based images of the field, allowed us to identify PSR J0357+3205 as a faint source with a soft spectrum, consistent with a purely non-thermal emission (photon index Gamma=2.53+/-0.25). The absorbing column (NH=8+/-4x10^20 cm^-2) is consistent with a distance of a few hundred parsecs. Moreover, the Chandra data unveiled a huge (9 arcmin long) extended feature apparently protruding from the pulsar. Its non-thermal X-ray spectrum points to synchrotron emission from energetic particles from the pulsar wind, possibly similar to other elongated X-ray tails associated with rotation-powered pulsars and explained as bow-shock pulsar wind nebulae (PWNe). However, energetic arguments, as well as the peculiar morphology of the diffuse feature associated with PSR J0357+3205 make the bow-shock PWN interpretation rather challenging.
Electrons/positrons produced in a pulsar magnetosphere emit synchrotron radiation, which is widely believed as the origin of the non-thermal X-ray emission detected from pulsars. Particles are produced by curvature photons emitted from accelerated particles in the magnetosphere. These curvature photons are detected as pulsed $gamma$-ray emissions from pulsars with age $lesssim10^6$ yr. Using $gamma$-ray observations and analytical model, we impose severe constraints on the synchrotron radiation as a mechanism of the non-thermal X-ray emission. In most middle-aged pulsars ($sim10^5-10^6$ yr) which photon-photon pair production is less efficient in their magnetosphere, we find that the synchrotron radiation model is difficult to explain the observed non-thermal X-ray emission.
In a radio search with the Green Bank Telescope of three unidentified low Galactic latitude Fermi-LAT sources, we have discovered the middle-aged pulsar J2030+3641, associated with 1FGL J2030.0+3641 (2FGL J2030.0+3640). Following the detection of gamma-ray pulsations using a radio ephemeris, we have obtained a phase-coherent timing solution based on gamma-ray and radio pulse arrival times that spans the entire Fermi mission. With a rotation period of 0.2 s, spin-down luminosity of 3e34 erg/s, and characteristic age of 0.5 Myr, PSR J2030+3641 is a middle-aged neutron star with spin parameters similar to those of the exceedingly gamma-ray-bright and radio-undetected Geminga. Its gamma-ray flux is 1% that of Geminga, primarily because of its much larger distance, as suggested by the large integrated column density of free electrons, DM=246 pc/cc. We fit the gamma-ray light curve, along with limited radio polarimetric constraints, to four geometrical models of magnetospheric emission, and while none of the fits have high significance some are encouraging and suggest that further refinements of these models may be worthwhile. We argue that not many more non-millisecond radio pulsars may be detected along the Galactic plane that are responsible for LAT sources, but that modified methods to search for gamma-ray pulsations should be productive -- PSR J2030+3641 would have been found blindly in gamma rays if only >0.8 GeV photons had been considered, owing to its relatively flat spectrum and location in a region of high soft background.
We report on the energy-resolved timing and phase-resolved spectral analysis of X-ray emission from PSR J0659+1414 observed with XMM-Newton and NuSTAR. We find that the new data rule out the previously suggested model of the phase-dependent spectrum as a three-component (2 blackbodies + power-law) continuum, which shows large residuals between $0.3-0.7$ keV. Fitting neutron star atmosphere models or several blackbodies to the spectrum does not provide a better description of the spectrum, and requires spectral model components with unrealistically large emission region sizes. The fits improve significantly if we add a phase-dependent absorption feature with central energy $0.5-0.6$ keV and equivalent width up to $approx 50$ eV. We detected the feature for about half of the pulse cycle. Energy-resolved pulse profiles support the description of the spectrum with a three-component continuum and an absorption component. The absorption feature could be interpreted as an electron cyclotron line originating in the pulsar magnetosphere and broadened by the non-uniformity of the magnetic field along the line of sight. The significant phase-variability in the thermal emission from the entire stellar surface may indicate multi-polar magnetic fields and a non-uniform temperature distribution. The strongly pulsed non-thermal spectral component detected with NuSTAR in the $3-20$ keV range is well fit by a power-law model with a photon index $Gamma=1.5pm0.2$.