Do you want to publish a course? Click here

Evolutionary optimization of optical antennas

218   0   0.0 ( 0 )
 Added by Thorsten Feichtner
 Publication date 2012
  fields Physics
and research's language is English




Ask ChatGPT about the research

The design of nano-antennas is so far mainly inspired by radio-frequency technology. However, material properties and experimental settings need to be reconsidered at optical frequencies, which entails the need for alternative optimal antenna designs. Here a checkerboard-type, initially random array of gold cubes is subjected to evolutionary optimization. To illustrate the power of the approach we demonstrate that by optimizing the near-field intensity enhancement the evolutionary algorithm finds a new antenna geometry, essentially a split-ring/two-wire antenna hybrid which surpasses by far the performance of a conventional gap antenna by shifting the n=1 split-ring resonance into the optical regime.



rate research

Read More

Nanoantennas for light enhance light-matter interaction at the nanoscale making them useful in optical communication, sensing, and spectroscopy. So far nanoantenna engineering has been largely based on rules derived from the radio frequency domain which neglect the inertia of free metal electrons at optical frequencies causing phenomena such as complete field penetration, ohmic losses and plasmon resonances. Here we introduce a general and scalable evolutionary algorithm that accounts for topological constrains of the fabrication method and therefore yields unexpected nanoantenna designs exhibiting strong light localization and enhancement which can directly be printed by focused-ion beam milling. The fitness ranking in a hierarchy of such antennas is validated experimentally by two-photon photoluminescence. Analysis of the best antennas operation principle shows that it deviates fundamentally from that of classical radio wave-inspired designs. Our work sets the stage for a widespread application of evolutionary optimization to a wide range of problems in nano photonics.
Metal nanoantennas supporting localized surface plasmon resonances have become an indispensable tool in bio(chemical) sensing and nanoscale imaging applications. The high plasmon-enhanced electric field intensity in the visible or near-IR range that enables the above applications may also cause local heating of nanoantennas. We present a design of hybrid optical-thermal antennas that simultaneously enable intensity enhancement at the operating wavelength in the visible and nanoscale local temperature control. We demonstrate a possibility to reduce the hybrid antenna operating temperature via enhanced infrared thermal emission. We predict via rigorous numerical modeling that hybrid optical-thermal antennas that support high-quality-factor photonic-plasmonic modes enable up to two orders of magnitude enhancement of localized electric fields and of the optical power absorbed in the nanoscale metal volume. At the same time, the hybrid antenna temperature can be lowered by several hundred degrees with respect to its all-metal counterpart under continuous irradiance of 104-105 W/m2. The temperature reduction effect is attributed to the enhanced radiative cooling, which is mediated by the thermally-excited localized surface phonon polariton modes. We further show that temperature reduction under even higher irradiances can be achieved by a combination of enhanced radiative and convective cooling in hybrid antennas. Finally, we demonstrate how hybrid optical-thermal antennas can be used to achieve strong localized heating of nanoparticles while keeping the rest of the optical chip at low temperature.
Plasmonics aims to interface photonics and electronics. Finding optical, near-field analogues of much used electro-technical components is crucial to the success of such a platform. Here we present the plasmonic analogue of a non-reciprocal antenna. For non-reciprocality in a plasmonic context, the optical excitation and emission resonances of the antenna need to be an orthogonal set. We show that nonlinear excitation of metal nanoantennas creates a sufficient shift between excitation and emission wavelengths that they can be interpreted as decoupled, allowing for independent tuning of excitation and emission properties along different spatial dimensions. This leads, for given excitation wavelength and polarization, to independent optimization of emission intensity, frequency spectrum, polarization and angular spectrum. Non-reciprocal optical antennas of both gold and aluminum are characterized and shown to be useful as e.g. nonlinear signal transducers or nanoscale sources of widely tunable light.
127 - Mario Agio 2011
Recent progress in nanotechnology has enabled us to fabricate subwavelength architectures that function as antennas for improving the exchange of optical energy with nanoscale matter. We describe the main features of optical antennas for enhancing quantum emitters and review designs that increase the spontaneous emission rate by orders of magnitude from the ultraviolet up to the near-infrared spectral range. To further explore how optical antennas may lead to unprecedented regimes of light-matter interaction, we draw a relationship between metal nanoparticles, radio-wave antennas and optical resonators. Our analysis points out how optical antennas may function as nanoscale resonators and how these may offer unique opportunities with respect to state-of-the-art microcavities.
The emission rate of a point dipole can be strongly increased in presence of a well-designed optical antenna. Yet, optical antenna design is largely based on radio-frequency rules, ignoring e.g.~ohmic losses and non-negligible field penetration in metals at optical frequencies. Here we combine reciprocity and Poyntings theorem to derive a set of optical-frequency antenna design rules for benchmarking and optimizing the performance of optical antennas driven by single quantum emitters. Based on these findings a novel plasmonic cavity antenna design is presented exhibiting a considerably improved performance compared to a reference two-wire antenna. Our work will be useful for the design of high-performance optical antennas and nanoresonators for diverse applications ranging from quantum optics to antenna-enhanced single-emitter spectroscopy and sensing.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا