No Arabic abstract
Metal nanoantennas supporting localized surface plasmon resonances have become an indispensable tool in bio(chemical) sensing and nanoscale imaging applications. The high plasmon-enhanced electric field intensity in the visible or near-IR range that enables the above applications may also cause local heating of nanoantennas. We present a design of hybrid optical-thermal antennas that simultaneously enable intensity enhancement at the operating wavelength in the visible and nanoscale local temperature control. We demonstrate a possibility to reduce the hybrid antenna operating temperature via enhanced infrared thermal emission. We predict via rigorous numerical modeling that hybrid optical-thermal antennas that support high-quality-factor photonic-plasmonic modes enable up to two orders of magnitude enhancement of localized electric fields and of the optical power absorbed in the nanoscale metal volume. At the same time, the hybrid antenna temperature can be lowered by several hundred degrees with respect to its all-metal counterpart under continuous irradiance of 104-105 W/m2. The temperature reduction effect is attributed to the enhanced radiative cooling, which is mediated by the thermally-excited localized surface phonon polariton modes. We further show that temperature reduction under even higher irradiances can be achieved by a combination of enhanced radiative and convective cooling in hybrid antennas. Finally, we demonstrate how hybrid optical-thermal antennas can be used to achieve strong localized heating of nanoparticles while keeping the rest of the optical chip at low temperature.
Many classes of two-dimensional (2D) materials have emerged as potential platforms for novel electronic and optical devices. However, the physical properties are strongly influenced by nanoscale heterogeneities in the form of edges, grain boundaries, and nucleation sites. Using combined tip-enhanced Raman scattering (TERS) and photoluminescence (TEPL) nano-spectroscopy and -imaging, we study the associated effects on the excitonic properties in monolayer WSe2 grown by physical vapor deposition (PVD). With <15 nm spatial resolution we resolve nonlocal nanoscale correlations of PL spectral intensity and shifts with crystal edges and internal twin boundaries associated with the expected exciton diffusion length. Through an active atomic force tip interaction we can control the crystal strain on the nanoscale, and tune the local bandgap in reversible (up to 24 meV shift) and irreversible (up to 48 meV shift) fashion. This allows us to distinguish the effect of strain from the dominant influence of defects on the PL modification at the different structural heterogeneities. Hybrid nano-optical and nano-mechanical imaging and spectroscopy thus enables the systematic study of the coupling of structural and mechanical degrees of freedom to the nanoscale electronic and optical properties in layered 2D materials.
The coupling of laser light to matter can exert sub-cycle coherent control over material properties, with optically induced currents and magnetism shown to be controllable on ultrafast femtosecond time scales. Here, by employing laser light consisting of both linear and circular pulses, we show that charge of specified spin and crystal momentum can be created with precision throughout the first Brillouin zone. Our hybrid pulses induce in a controlled way both adiabatic intraband motion as well as vertical interband excitation between valence and conduction bands, and require only a gapped spin split valley structure for their implementation. This scenario is commonly found in the 2d semi-conductors, and we demonstrate our approach with monolayer WSe$_2$. We thus establish a route from laser light to local control over excitations in reciprocal space, opening the way to the preparation of momenta specified excited states at ultrafast time scales.
Polaritonic devices exploit the coherent coupling between excitonic and photonic degrees of freedom to perform highly nonlinear operations with low input powers. Most of the current results exploit excitons in epitaxially grown quantum wells and require low temperature operation, while viable alternatives have yet to be found at room temperature. Here we show that large single-crystal flakes of two-dimensional layered perovskite are able to sustain strong polariton nonlinearities at room temperature with no need to be embedded in an optical cavity. In particular, exciton-exciton interaction energies are measured to be remarkably similar to the ones known for inorganic quantum wells at cryogenic temperatures, and more than one order of magnitude larger than alternative room temperature polariton devices reported so far. Thanks to their easy fabrication, large dipolar oscillator strengths and strong nonlinearities, these materials hold great promises to realize actual polariton devices at room temperature.
Raman intensity of Rhodamine B (RhB) is enhanced by inserting a thin high k{appa} dielectric layer which reduces the surface plasmon damping at the gold-graphene interface. The results indicate that the Raman intensity increases sharply by plasmonic resonance enhancement while maintaining efficient fluorescence quenching with optimized dielectric layer thickness.
Structured light are custom light fields where the phase, polarization, and intensity vary with position. It has been used for nanotweezers, nanoscale imaging, and quantum information technology, but its role in exciting optical transitions in materials has been little examined so far. Here we use group theory to derive the optical selection rules for nanosystems that get excited by structured light. If the size of the nanostructure is comparable to the light wavelength, it will sample the full beam profile during excitation with profound consequences on optical excitations. Using nanooligomers as model nanosystems, we show that structured light excites optical transitions that are forbidden for linearly polarized or unpolarized light. Such dipole forbidden modes have longer lifetimes and narrower resonances than dipole allowed transitions. We derive symmetry-adapted eigenmodes for nanooligomers containing up to six monomers. Our study includes tables with selection rules for cylindrical vector beams, for beams with orbital angular momentum, and for field retardation along the propagation direction. We discuss multi-photon processes of nonlinear optics in addition to one-photon absorption. Structured light will unlock a broad range of excitations in nanooligomers and other nanostructures that are currently inaccessible to optical studies.