Do you want to publish a course? Click here

Probing the innermost dusty structure in AGN with mid-IR and near-IR interferometers

100   0   0.0 ( 0 )
 Added by Makoto Kishimoto
 Publication date 2012
  fields Physics
and research's language is English




Ask ChatGPT about the research

With mid-IR and near-IR long-baseline interferometers, we are now mapping the radial distribution of the dusty accreting material in AGNs at sub-pc scales. We currently focus on Type 1 AGNs, where the innermost region is unobscured and its intrinsic structure can be studied directly. As a first systematic study of Type 1s, we obtained mid-/near-IR data for small samples over ~3-4 orders of magnitudes in UV luminosity L of the central engine. Here we effectively trace the structure by observing dust grains that are radiatively heated by the central engine. Consistent with a naive expectation for such dust grains, the dust sublimation radius R_in is in fact empirically known to be scaling with L^1/2 from the near-IR reverberation measurements, and this is also supported by our near-IR interferometry. Utilizing this empirical relationship, we normalize the radial extent by R_in and eliminate the simple L^1/2 scaling for a direct comparison over the samples. We then find that, in the mid-IR, the overall size in units of R_in seems to become more compact in higher luminosity sources. More specifically, the mid-IR brightness distribution is rather well described by a power-law, and this power-law becomes steeper in higher luminosity objects. The near-IR flux does not seem to be a simple inward extrapolation of the mid-IR power-law component toward shorter wavelengths, but it rather comes from a little distinct brightness concentration at the inner rim region of the dust distribution. Its structure is not well constrained yet, but there is tentative evidence that this inner near-IR-emitting structure has a steeper radial distribution in jet-launching objects. All these should be scrutinized with further observations.

rate research

Read More

We describe a mid-infrared (MIR) survey of local AGN to be conducted with the CanariCam instrument on the Gran Telescopio Canarias (GTC). We will obtain MIR imaging and spectroscopy of a sample of ~100 AGN covering six orders of magnitude in AGN luminosity, and including different AGN classes (e.g., LINERs, Seyfert 1s and 2s, QSO). The main goals are: (1) to test unification of Type 1 and Type 2 AGN, (2) to study the star formation activity around AGN, and (3) to explore the role of the dusty torus in low-luminosity AGN.
Context: We investigate mid-infrared and X-ray properties of the dusty torus invoked in the unification scenario for active galactic nuclei. Aims: We use the relation between mid IR and hard X-ray luminosities to constrain the geometry and physical state of the dusty torus. Methods: We present new VISIR observations of 17 nearby AGN and combine these with our earlier VISIR sample of 8 Seyfert galaxies. Combining these observations with X-ray data from the literature we study the correlation between their mid IR and hard X-ray luminosities. Results: A statistically highly significant correlation between the rest frame 12.3 mircon (L_MIR) and 2-10 keV (L_X) luminosities is found. Furthermore, with a probability of 97%, we find that Sy 1 and Sy 2 have the same distribution of L_MIR over L_X. Conclusions: The high resolution of our MIR imaging allows us to exclude any significant non-torus contribution to the AGN mid IR continuum,thereby implying that the similarity in the L_MIR / L_X ratio between Sy 1s and Sy 2s is intrinsic to AGN. We argue that this is best explained by clumpy torus models. The slope of the correlation is in good agreement with the expectations from the unified scenario and indicates little to no change of the torus geometry with luminosity. In addition, we demonstrate that the high angular resolution is crucial for AGN studies in the IR regime.
182 - Lin Yan 2012
The Wide-field Infrared Survey Explorer (WISE) has completed its all-sky survey at 3.4-22 micron. We merge the WISE data with optical SDSS data and provide a phenomenological characterization of mid-IR, extragalactic sources. WISE is most sensitive at 3.4micron(W1) and least at 22micron(W4). The W1 band probes massive early-type galaxies out to zgtrsim1. This is more distant than SDSS identified early-type galaxies, consistent with the fact that 28% of 3.4micron sources have faint or no r-band counterparts (r>22.2). In contrast, 92-95% of 12 and 22micron sources have SDSS optical counterparts with r<22.2. WISE 3.4micron detects 89.8% of the entire SDSS QSO catalog at SNR(W1)>7, but only 18.9% at 22micron with SNR(W4)>5. We show that WISE colors alone are effective in isolating stars (or local early-type galaxies), star-forming galaxies and strong AGN/QSOs at z<3. We highlight three major applications of WISE colors: (1) Selection of strong AGN/QSOs at z<3 using W1-W2>0.8 and W2<15.2 criteria, producing a census of this population. The surface density of these strong AGN/QSO candidates is 67.5+-0.14/deg^2. (2) Selection of dust-obscured, type-2 AGN/QSO candidates. We show that WISE W1-W2>0.8, W2<15.2 combined with r-W2>6 (Vega) colors can be used to identify type-2 AGN candidates. The fraction of these type-2 AGN candidates is 1/3rd of all WISE color-selected AGNs. (3) Selection of ULIRGs at zsim2 with extremely red colors, r-W4>14 or well-detected 22micron sources lacking detections in the 3.4 and 4.6micron bands. The surface density of z~2 r-W4>14 ULIRGs is 0.9+-0.07/deg^2 at SNR(W4)>5 (flux(W4)>=2.5mJy), which is consistent with that inferred from smaller area Spitzer surveys. Optical spectroscopy of a small number of these high-redshift ULIRGs confirms our selection, and reveals a possible trend that optically fainter or r-W4 redder candidates are at higher redshifts.
Direct measurements of the extragalactic background light (EBL) in the near-IR to mid-IR waveband are extremely difficult due to an overwhelming foreground from the zodiacal light that outshines the faint cosmological diffuse radiation field by more than an order of magnitude. Indirect constraints on the EBL are provided by gamma-ray observations of AGN. Using the combination of the Fermi Gamma-Ray Space Telescope together with the current generation of ground-based air Cherenkov telescopes (H.E.S.S., MAGIC, and VERITAS) provides unprecedented sensitivity and spectral coverage for constraining the EBL in the near- to mid-IR. In this paper we present new limits on the EBL based on the analysis of the broad-band spectra of a select set of gamma-ray blazars covering 200 MeV to several TeV. The EBL intensity at 15 microns is constrained to be 1.36 +/- 0.58 nW m^-2 sr^-1. We find that the fast evolution and baseline EBL models of Stecker et al. (2006), as well as the model of Kneiske et al. (2004), predict significantly higher EBL intensities in the mid-IR (15 microns) than is allowed by the constraints derived here. In addition, the model of Franceschini et al. (2008) and the fiducial model of Dominguez et al. (2011) predict near- to mid-IR ratios smaller than that predicted by our analysis. Namely, their intensities in the near-IR are too low while their intensities in the mid-IR are marginally too high. All of the aforementioned models are inconsistent with our analysis at the >3 sigma level.
Spatially resolving the innermost torus in AGN is one of the main goals of its high-spatial-resolution studies. This could be done in the near-IR observations of Type 1 AGNs where we see directly the hottest dust grains in the torus. We discuss two critical issues in such studies. Firstly, we examine the nuclear point sources in the HST/NICMOS images of nearby Type 1 AGNs, to evaluate the possible contribution from the central putative accretion disk. After a careful subtraction of host bulge flux, we show that near-IR colors of the point sources appear quite interpretable simply as a composite of a black-body-like spectrum and a relatively blue distinct component as expected for a torus and an accretion disk, respectively. Our radiative transfer models for clumpy tori also support this simple two-component interpretation. The observed near-IR colors suggest a fractional accretion disk contribution of ~25% or less at 2.2 micron. Secondly, we show that the innermost torus radii as indicated by the recent near-IR reverberation measurements are systematically smaller by a factor of ~3 than the predicted dust sublimation radius with a reasonable assumption for graphite grains of sublimation temperature 1500 K and size 0.05 micron in radius. The discrepancy might indicate a much higher sublimation temperature or a typical grain size being much larger in the innermost tori, though the former case appears to be disfavored by the observed colors of the HST point sources studied above. The near-IR interferometry with a baseline of ~100 m should be able to provide the important, independent size measurements, based on the low accretion disk contribution obtained above.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا