Do you want to publish a course? Click here

Strong New Constraints on the Extragalactic Background Light in the Near- to Mid-IR

110   0   0.0 ( 0 )
 Added by Matthew Orr
 Publication date 2011
  fields Physics
and research's language is English




Ask ChatGPT about the research

Direct measurements of the extragalactic background light (EBL) in the near-IR to mid-IR waveband are extremely difficult due to an overwhelming foreground from the zodiacal light that outshines the faint cosmological diffuse radiation field by more than an order of magnitude. Indirect constraints on the EBL are provided by gamma-ray observations of AGN. Using the combination of the Fermi Gamma-Ray Space Telescope together with the current generation of ground-based air Cherenkov telescopes (H.E.S.S., MAGIC, and VERITAS) provides unprecedented sensitivity and spectral coverage for constraining the EBL in the near- to mid-IR. In this paper we present new limits on the EBL based on the analysis of the broad-band spectra of a select set of gamma-ray blazars covering 200 MeV to several TeV. The EBL intensity at 15 microns is constrained to be 1.36 +/- 0.58 nW m^-2 sr^-1. We find that the fast evolution and baseline EBL models of Stecker et al. (2006), as well as the model of Kneiske et al. (2004), predict significantly higher EBL intensities in the mid-IR (15 microns) than is allowed by the constraints derived here. In addition, the model of Franceschini et al. (2008) and the fiducial model of Dominguez et al. (2011) predict near- to mid-IR ratios smaller than that predicted by our analysis. Namely, their intensities in the near-IR are too low while their intensities in the mid-IR are marginally too high. All of the aforementioned models are inconsistent with our analysis at the >3 sigma level.



rate research

Read More

The extragalactic background light (EBL) is comprised of the cumulative radiation from all galaxies and active galactic nuclei over the cosmic history. In addition to point sources, EBL also contains information from diffuse sources of radiation. The angular power spectra of the near-infrared intensities could contain additional signals and a complete understanding of the nature of the IR background is still lacking in the literature. Here we explore the constraints that can be placed on particle decays, especially candidate dark matter models involving axions that trace dark matter halos of galaxies. Axions with a mass around a few eV will decay via two photons with wavelengths in the near-IR band, and will leave a signature in the IR background intensity power spectrum. Using recent power spectra measurements from the Hubble Space Telescope (HST) and Cosmic Infrared Background Experiment (CIBER), we find that the 0.6 to 1.6 micron power spectra can be explained by axions with masses around 4 eV. The total axion abundance Omega_a~0.05, and it is comparable to the baryon density of the Universe. The suggested mean axion mass and abundance are not ruled out by existing cosmological observations. Interestingly, the axion model with a mass distribution is preferred by the data, which cannot be explained by the standard quantum chromodynamics (QCD) theory and needs further discussion.
Extragalactic background light (EBL) anisotropy traces variations in the total production of photons over cosmic history, and may contain faint, extended components missed in galaxy point source surveys. Infrared EBL fluctuations have been attributed to primordial galaxies and black holes at the epoch of reionization (EOR), or alternately, intra-halo light (IHL) from stars tidally stripped from their parent galaxies at low redshift. We report new EBL anisotropy measurements from a specialized sounding rocket experiment at 1.1 and 1.6 micrometers. The observed fluctuations exceed the amplitude from known galaxy populations, are inconsistent with EOR galaxies and black holes, and are largely explained by IHL emission. The measured fluctuations are associated with an EBL intensity that is comparable to the background from known galaxies measured through number counts, and therefore a substantial contribution to the energy contained in photons in the cosmos.
87 - A. Maurer , M. Raue , T. Kneiske 2012
The existence of predominantly cold non-baryonic dark matter is unambiguously demonstrated by several observations (e.g., structure formation, big bang nucleosynthesis, gravitational lensing, and rotational curves of spiral galaxies). A candidate well motivated by particle physics is a weakly interacting massive particle (WIMP). Self-annihilating WIMPs would affect the stellar evolution especially in the early universe. Stars powered by self-annihilating WIMP dark matter should possess different properties compared with standard stars. While a direct detection of such dark matter powered stars seems very challenging, their cumulative emission might leave an imprint in the diffuse metagalactic radiation fields, in particular in the mid-infrared part of the electromagnetic spectrum. In this work the possible contributions of dark matter powered stars (dark stars; DSs) to the extragalactic background light (EBL) are calculated. It is shown that existing data and limits of the EBL intensity can already be used to rule out some DS parameter sets.
Context. Measurements of the Extragalactic Background Light (EBL) are a fundamental source of information on the collective emission of cosmic sources. Aims. At infrared wavelengths, however, these measurements are precluded by the overwhelming dominance from Interplanetary Dust emission and the Galactic infrared foreground. Only at $lambda > 300 mu$m, where the foregrounds are minimal, has the Infrared EBL (IR EBL) been inferred from analysis of the COBE maps. The present paper aims to assess the possibility of evaluating the IR EBL from a few $mu$m up to the peak of the emission at >100 $mu$m using an indirect method that avoids the foreground problem. Methods. To this purpose we exploit the effect of pair-production from gamma-gamma interaction by considering the highest energy photons emitted by extragalactic sources and their interaction with the IR EBL photons. We simulate observations of a variety of low redshift emitters with the forthcoming Imaging Atmospheric Cherenkov Telescope (IACT) arrays (CTA in particular) and water Cherenkov observatories (LHAASO, HAWC, SWGO) to assess their suitability to constrain the EBL at such long wavelengths. Results. We find that, even under the most extremely favorable conditions of huge emission flares, extremely high-energy emitting blazars are not very useful for our purpose because they are much too distant (>100 Mpc the nearest ones, MKN 501 and MKN 421). Observations of more local Very High Energy (VHE) emitting AGNs, like low-redshift radio galaxies (M87, IC 310, Centaurus A), are better suited and will potentially allow us to constrain the EBL up to $lambda simeq 100 mu$m.
201 - Lin Yan 2012
The Wide-field Infrared Survey Explorer (WISE) has completed its all-sky survey at 3.4-22 micron. We merge the WISE data with optical SDSS data and provide a phenomenological characterization of mid-IR, extragalactic sources. WISE is most sensitive at 3.4micron(W1) and least at 22micron(W4). The W1 band probes massive early-type galaxies out to zgtrsim1. This is more distant than SDSS identified early-type galaxies, consistent with the fact that 28% of 3.4micron sources have faint or no r-band counterparts (r>22.2). In contrast, 92-95% of 12 and 22micron sources have SDSS optical counterparts with r<22.2. WISE 3.4micron detects 89.8% of the entire SDSS QSO catalog at SNR(W1)>7, but only 18.9% at 22micron with SNR(W4)>5. We show that WISE colors alone are effective in isolating stars (or local early-type galaxies), star-forming galaxies and strong AGN/QSOs at z<3. We highlight three major applications of WISE colors: (1) Selection of strong AGN/QSOs at z<3 using W1-W2>0.8 and W2<15.2 criteria, producing a census of this population. The surface density of these strong AGN/QSO candidates is 67.5+-0.14/deg^2. (2) Selection of dust-obscured, type-2 AGN/QSO candidates. We show that WISE W1-W2>0.8, W2<15.2 combined with r-W2>6 (Vega) colors can be used to identify type-2 AGN candidates. The fraction of these type-2 AGN candidates is 1/3rd of all WISE color-selected AGNs. (3) Selection of ULIRGs at zsim2 with extremely red colors, r-W4>14 or well-detected 22micron sources lacking detections in the 3.4 and 4.6micron bands. The surface density of z~2 r-W4>14 ULIRGs is 0.9+-0.07/deg^2 at SNR(W4)>5 (flux(W4)>=2.5mJy), which is consistent with that inferred from smaller area Spitzer surveys. Optical spectroscopy of a small number of these high-redshift ULIRGs confirms our selection, and reveals a possible trend that optically fainter or r-W4 redder candidates are at higher redshifts.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا