Do you want to publish a course? Click here

Bayesian logistic betting strategy against probability forecasting

83   0   0.0 ( 0 )
 Added by Akimichi Takemura
 Publication date 2012
  fields Financial
and research's language is English




Ask ChatGPT about the research

We propose a betting strategy based on Bayesian logistic regression modeling for the probability forecasting game in the framework of game-theoretic probability by Shafer and Vovk (2001). We prove some results concerning the strong law of large numbers in the probability forecasting game with side information based on our strategy. We also apply our strategy for assessing the quality of probability forecasting by the Japan Meteorological Agency. We find that our strategy beats the agency by exploiting its tendency of avoiding clear-cut forecasts.



rate research

Read More

We propose a sequential optimizing betting strategy in the multi-dimensional bounded forecasting game in the framework of game-theoretic probability of Shafer and Vovk (2001). By studying the asymptotic behavior of its capital process, we prove a generalization of the strong law of large numbers, where the convergence rate of the sample mean vector depends on the growth rate of the quadratic variation process. The growth rate of the quadratic variation process may be slower than the number of rounds or may even be zero. We also introduce an information criterion for selecting efficient betting items. These results are then applied to multiple asset trading strategies in discrete-time and continuous-time games. In the case of continuous-time game we present a measure of the jaggedness of a vector-valued continuous process. Our results are examined by several numerical examples.
We study how the presence of correlations in physical variables contributes to the form of probability distributions. We investigate a process with correlations in the variance generated by (i) a Gaussian or (ii) a truncated L{e}vy distribution. For both (i) and (ii), we find that due to the correlations in the variance, the process ``dynamically generates power-law tails in the distributions, whose exponents can be controlled through the way the correlations in the variance are introduced. For (ii), we find that the process can extend a truncated distribution {it beyond the truncation cutoff}, which leads to a crossover between a L{e}vy stable power law and the present ``dynamically-generated power law. We show that the process can explain the crossover behavior recently observed in the $S&P500$ stock index.
The CEV model is given by the stochastic differential equation $X_t=X_0+int_0^tmu X_sds+int_0^tsigma (X^+_s)^pdW_s$, $frac{1}{2}le p<1$. It features a non-Lipschitz diffusion coefficient and gets absorbed at zero with a positive probability. We show the weak convergence of Euler-Maruyama approximations $X_t^n$ to the process $X_t$, $0le tle T$, in the Skorokhod metric. We give a new approximation by continuous processes which allows to relax some technical conditions in the proof of weak convergence in cite{HZa} done in terms of discrete time martingale problem. We calculate ruin probabilities as an example of such approximation. We establish that the ruin probability evaluated by simulations is not guaranteed to converge to the theoretical one, because the point zero is a discontinuity point of the limiting distribution. To establish such convergence we use the Levy metric, and also confirm the convergence numerically. Although the result is given for the specific model, our method works in a more general case of non-Lipschitz diffusion with absorbtion.
By appealing to renewal theory we determine the equations that the mean exit time of a continuous-time random walk with drift satisfies both when the present coincides with a jump instant or when it does not. Particular attention is paid to the corrections ensuing from the non-Markovian nature of the process. We show that when drift and jumps have the same sign the relevant integral equations can be solved in closed form. The case when holding times have the classical Erlang distribution is considered in detail.
The paper discusses multivariate self- and cross-exciting processes. We define a class of multivariate point processes via their corresponding stochastic intensity processes that are driven by stochastic jumps. Essentially, there is a jump in an intensity process whenever the corresponding point process records an event. An attribute of our modelling class is that not only a jump is recorded at each instance, but also its magnitude. This allows large jumps to influence the intensity to a larger degree than smaller jumps. We give conditions which guarantee that the process is stable, in the sense that it does not explode, and provide a detailed discussion on when the subclass of linear models is stable. Finally, we fit our model to financial time series data from the S&P 500 and Nikkei 225 indices respectively. We conclude that a nonlinear variant from our modelling class fits the data best. This supports the observation that in times of crises (high intensity) jumps tend to arrive in clusters, whereas there are typically longer times between jumps when the markets are calmer. We moreover observe more variability in jump sizes when the intensity is high, than when it is low.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا