We propose a sequential optimizing betting strategy in the multi-dimensional bounded forecasting game in the framework of game-theoretic probability of Shafer and Vovk (2001). By studying the asymptotic behavior of its capital process, we prove a generalization of the strong law of large numbers, where the convergence rate of the sample mean vector depends on the growth rate of the quadratic variation process. The growth rate of the quadratic variation process may be slower than the number of rounds or may even be zero. We also introduce an information criterion for selecting efficient betting items. These results are then applied to multiple asset trading strategies in discrete-time and continuous-time games. In the case of continuous-time game we present a measure of the jaggedness of a vector-valued continuous process. Our results are examined by several numerical examples.
We propose a betting strategy based on Bayesian logistic regression modeling for the probability forecasting game in the framework of game-theoretic probability by Shafer and Vovk (2001). We prove some results concerning the strong law of large numbers in the probability forecasting game with side information based on our strategy. We also apply our strategy for assessing the quality of probability forecasting by the Japan Meteorological Agency. We find that our strategy beats the agency by exploiting its tendency of avoiding clear-cut forecasts.
Many autonomous systems forecast aspects of the future in order to aid decision-making. For example, self-driving vehicles and robotic manipulation systems often forecast future object poses by first detecting and tracking objects. However, this detect-then-forecast pipeline is expensive to scale, as pose forecasting algorithms typically require labeled sequences of object poses, which are costly to obtain in 3D space. Can we scale performance without requiring additional labels? We hypothesize yes, and propose inverting the detect-then-forecast pipeline. Instead of detecting, tracking and then forecasting the objects, we propose to first forecast 3D sensor data (e.g., point clouds with $100$k points) and then detect/track objects on the predicted point cloud sequences to obtain future poses, i.e., a forecast-then-detect pipeline. This inversion makes it less expensive to scale pose forecasting, as the sensor data forecasting task requires no labels. Part of this works focus is on the challenging first step -- Sequential Pointcloud Forecasting (SPF), for which we also propose an effective approach, SPFNet. To compare our forecast-then-detect pipeline relative to the detect-then-forecast pipeline, we propose an evaluation procedure and two metrics. Through experiments on a robotic manipulation dataset and two driving datasets, we show that SPFNet is effective for the SPF task, our forecast-then-detect pipeline outperforms the detect-then-forecast approaches to which we compared, and that pose forecasting performance improves with the addition of unlabeled data.
Games with large branching factors pose a significant challenge for game tree search algorithms. In this paper, we address this problem with a sampling strategy for Monte Carlo Tree Search (MCTS) algorithms called {em na{i}ve sampling}, based on a variant of the Multi-armed Bandit problem called {em Combinatorial Multi-armed Bandits} (CMAB). We analyze the theoretical properties of several variants of {em na{i}ve sampling}, and empirically compare it against the other existing strategies in the literature for CMABs. We then evaluate these strategies in the context of real-time strategy (RTS) games, a genre of computer games characterized by their very large branching factors. Our results show that as the branching factor grows, {em na{i}ve sampling} outperforms the other sampling strategies.
When normal and mis`{e}re games are played on bi-type binary Galton-Watson trees (with vertices coloured blue or red and each having either no child or precisely $2$ children), with one player allowed to move along monochromatic edges and the other along non-monochromatic edges, the draw probabilities equal $0$ unless every vertex gives birth to one blue and one red child. On bi-type Poisson trees where each vertex gives birth to Poisson$(lambda)$ offspring in total, the draw probabilities approach $1$ as $lambda rightarrow infty$. We study such emph{nove
Many real-world applications involve teams of agents that have to coordinate their actions to reach a common goal against potential adversaries. This paper focuses on zero-sum games where a team of players faces an opponent, as is the case, for example, in Bridge, collusion in poker, and collusion in bidding. The possibility for the team members to communicate before gameplay---that is, coordinate their strategies ex ante---makes the use of behavioral strategies unsatisfactory. We introduce Soft Team Actor-Critic (STAC) as a solution to the teams coordination problem that does not require any prior domain knowledge. STAC allows team members to effectively exploit ex ante communication via exogenous signals that are shared among the team. STAC reaches near-optimal coordinated strategies both in perfectly observable and partially observable games, where previous deep RL algorithms fail to reach optimal coordinated behaviors.