Do you want to publish a course? Click here

Non-Markovian model of photon-assisted dephasing by electron-phonon interactions in a coupled quantum-dot-cavity system

106   0   0.0 ( 0 )
 Added by Per Kaer
 Publication date 2009
  fields Physics
and research's language is English




Ask ChatGPT about the research

We investigate the influence of electron-phonon interactions on the dynamical properties of a quantum-dot-cavity QED system. We show that non-Markovian effects in the phonon reservoir lead to strong changes in the dynamics, arising from photon-assisted dephasing processes, not present in Markovian treatments. A pronounced consequence is the emergence of a phonon induced spectral asymmetry when detuning the cavity from the quantum-dot resonance. The asymmetry can only be explained when considering the polaritonic quasi-particle nature of the quantum-dot-cavity system. Furthermore, a temperature induced reduction of the light-matter coupling strength is found to be relevant in interpreting experimental data, especially in the strong coupling regime.

rate research

Read More

Quantum confinement leads to the formation of discrete electronic states in quantum dots. Here we probe electron-phonon interactions in a suspended InAs nanowire double quantum dot (DQD) that is electric-dipole coupled to a microwave cavity. We apply a finite bias across the wire to drive a steady state population in the DQD excited state, enabling a direct measurement of the electron-phonon coupling strength at the DQD transition energy. The amplitude and phase response of the cavity field exhibit features that are periodic in the DQD energy level detuning due to the phonon modes of the nanowire. The observed cavity phase shift is consistent with theory that predicts a renormalization of the cavity center frequency by coupling to phonons.
136 - A. Morreau , E. A. Muljarov 2018
We present a semi-analytic and asymptotically exact solution to the problem of phonon-induced decoherence in a quantum dot-microcavity system. Particular emphasis is placed on the linear polarization and optical absorption, but the approach presented herein may be straightforwardly adapted to address any elements of the exciton-cavity density matrix. At its core, the approach combines Trotters decomposition theorem with the linked cluster expansion. The effects of the exciton-cavity and exciton-phonon couplings are taken into account on equal footing, thereby providing access to regimes of comparable polaron and polariton timescales. We show that the optical decoherence is realized by real phonon-assisted transitions between different polariton states of the quantum dot-cavity system, and that the polariton line broadening is well-described by Fermis golden rule in the polariton frame. We also provide purely analytic approximations which accurately describe the system dynamics in the limit of longer polariton timescales.
154 - P. Kaer , P. Lodahl , A.-P. Jauho 2012
We study the fundamental limit on single-photon indistinguishability imposed by decoherence due to phonon interactions in semiconductor quantum dot-cavity QED systems. Employing an exact diagonalization approach we find large differences compared to standard methods. An important finding is that short-time non-Markovian effects limit the maximal attainable indistinguishability. The results are explained using a polariton picture that yields valuable insight into the phonon-induced dephasing dynamics.
203 - S. Hughes , P. Yao , F. Milde 2011
We present a medium-dependent quantum optics approach to describe the influence of electron-acoustic phonon coupling on the emission spectra of a strongly coupled quantum-dot cavity system. Using a canonical Hamiltonian for light quantization and a photon Green function formalism, phonons are included to all orders through the dot polarizability function obtained within the independent Boson model. We derive simple user-friendly analytical expressions for the linear quantum light spectrum, including the influence from both exciton and cavity-emission decay channels. In the regime of semiconductor cavity-QED, we study cavity emission for various exciton-cavity detunings and demonstrate rich spectral asymmetries as well as cavity-mode suppression and enhancement effects. Our technique is nonperturbative, and non-Markovian, and can be applied to study photon emission from a wide range of semiconductor quantum dot structures, including waveguides and coupled cavity arrays. We compare our theory directly to recent and apparently puzzling experimental data for a single site-controlled quantum dot in a photonic crystal cavity and show good agreement as a function of cavity-dot detuning and as a function of temperature.
We report on simulations of the degree of polarization entanglement of photon pairs simultaneously emitted from a quantum dot-cavity system that demand revisiting the role of phonons. Since coherence is a fundamental precondition for entanglement and phonons are known to be a major source of decoherence, it seems unavoidable that phonons can only degrade entanglement. In contrast, we demonstrate that phonons can cause a degree of entanglement that even surpasses the corresponding value for the phonon-free case. In particular, we consider the situation of comparatively small biexciton binding energies and either finite exciton or cavity mode splitting. In both cases, combinations of the splitting and the dot-cavity coupling strength are found where the entanglement exhibits a nonmonotonic temperature dependence which enables entanglement above the phonon-free level in a finite parameter range. This unusual behavior can be explained by phonon-induced renormalizations of the dot-cavity coupling $g$ in combination with a nonmonotonic dependence of the entanglement on $g$ that is present already without phonons.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا