Do you want to publish a course? Click here

Relative Symplectic Caps, 4-Genus And Fibered Knots

98   0   0.0 ( 0 )
 Added by Dheeraj Kulkarni
 Publication date 2012
  fields
and research's language is English




Ask ChatGPT about the research

We prove relati



rate research

Read More

We establish an existence $h$-principle for symplectic cobordisms of dimension $2n>4$ with concave overtwisted contact boundary.
406 - Yuhan Sun 2021
We present some computations of relative symplectic cohomology, with the help of an index bounded contact form. For a Liouville domain with an index bounded boundary, we construct a spectral sequence which starts from its classical symplectic cohomology and converges to its relative symplectic cohomology inside a Calabi-Yau manifold.
This paper presents two existence h-principles, the first for conformal symplectic structures on closed manifolds, and the second for leafwise conformal symplectic structures on foliated manifolds with non empty boundary. The latter h-principle allows to linearly deform certain codimension-$1$ foliations to contact structures. These results are essentially applications of the Borman-Eliashberg-Murphy h-principle for overtwisted contact structures and of the Eliashberg-Murphy symplectization of cobordisms, together with tools pertaining to foliated Morse theory, which are elaborated here.
We prove Gray--Moser stability theorems for complementary pairs of forms of constant class defining symplectic pairs, contact-symplectic pairs and contact pairs. We also consider the case of contact-symplectic and contact-contact structures, in which the constant class condition on a one-form is replaced by the condition that its kernel hyperplane distribution have constant class in the sense of E. Cartan.
147 - Austin Christian 2019
We use Menkes JSJ-type decomposition theorem for symplectic fillings to reduce the classification of strong and exact symplectic fillings of virtually overtwisted torus bundles to the same problem for tight lens spaces. For virtually overtwisted structures on elliptic or parabolic torus bundles, this gives a complete classification. For virtually overtwisted structures on hyperbolic torus bundles, we show that every strong or exact filling arises from a filling of a tight lens space via round symplectic 1-handle attachment, and we give a condition under which distinct tight lens space fillings yield the same torus bundle filling.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا