Do you want to publish a course? Click here

Index bounded relative symplectic cohomology

407   0   0.0 ( 0 )
 Added by Yuhan Sun
 Publication date 2021
  fields
and research's language is English
 Authors Yuhan Sun




Ask ChatGPT about the research

We present some computations of relative symplectic cohomology, with the help of an index bounded contact form. For a Liouville domain with an index bounded boundary, we construct a spectral sequence which starts from its classical symplectic cohomology and converges to its relative symplectic cohomology inside a Calabi-Yau manifold.



rate research

Read More

We establish a system of PDE, called open WDVV, that constrains the bulk-deformed superpotential and associated open Gromov-Witten invariants of a Lagrangian submanifold $L subset X$ with a bounding chain. Simultaneously, we define the quantum cohomo logy algebra of $X$ relative to $L$ and prove its associativity. We also define the relative quantum connection and prove it is flat. A wall-crossing formula is derived that allows the interchange of point-like boundary constraints and certain interior constraints in open Gromov-Witten invariants. Another result is a vanishing theorem for open Gromov-Witten invariants of homologically non-trivial Lagrangians with more than one point-like boundary constraint. In this case, the open Gromov-Witten invariants with one point-like boundary constraint are shown to recover certain closed invariants. From open WDVV and the wall-crossing formula, a system of recursive relations is derived that entirely determines the open Gromov-Witten invariants of $(X,L) = (mathbb{C}P^n, mathbb{R}P^n)$ with $n$ odd, defined in previous work of the authors. Thus, we obtain explicit formulas for enumerative invariants defined using the Fukaya-Oh-Ohta-Ono theory of bounding chains.
139 - Li-Sheng Tseng , Lihan Wang 2017
We introduce new boundary conditions for differential forms on symplectic manifolds with boundary. These boundary conditions, dependent on the symplectic structure, allows us to write down elliptic boundary value problems for both second-order and fourth-order symplectic Laplacians and establish Hodge theories for the cohomologies of primitive forms on manifolds with boundary. We further use these boundary conditions to define a relative version of the primitive cohomologies and to relate primitive cohomologies with Lefschetz maps on manifolds with boundary. As we show, these cohomologies of primitive forms can distinguish certain Kahler structures of Kahler manifolds with boundary.
We show that the isomorphism induced by the inclusion of pairs $(X,emptyset)subset (X,Y)$ between the relative bounded cohomology of $(X,Y)$ and the bounded cohomology of $X$ is isometric in degree at least 2 if the fundamental group of each connected component of $Y$ is amenable. As an application we provide a self-contained proof of Gromov Equivalence theorem and a generalization of a result of Fujiwara and Manning on the simplicial volume of generalized Dehn fillings.
We show that the exterior derivative operator on a symplectic manifold has a natural decomposition into two linear differential operators, analogous to the Dolbeault operators in complex geometry. These operators map primitive forms into primitive forms and therefore lead directly to the construction of primitive cohomologies on symplectic manifolds. Using these operators, we introduce new primitive cohomologies that are analogous to the Dolbeault cohomology in the complex theory. Interestingly, the finiteness of these primitive cohomologies follows directly from an elliptic complex. We calculate the known primitive cohomologies on a nilmanifold and show that their dimensions can vary depending on the class of the symplectic form.
We introduce filtered cohomologies of differential forms on symplectic manifolds. They generalize and include the cohomologies discussed in Paper I and II as a subset. The filtered cohomologies are finite-dimensional and can be associated with differential elliptic complexes. Algebraically, we show that the filtered cohomologies give a two-sided resolution of Lefschetz maps, and thereby, they are directly related to the kernels and cokernels of the Lefschetz maps. We also introduce a novel, non-associative product operation on differential forms for symplectic manifolds. This product generates an A-infinity algebra structure on forms that underlies the filtered cohomologies and gives them a ring structure. As an application, we demonstrate how the ring structure of the filtered cohomologies can distinguish different symplectic four-manifolds in the context of a circle times a fibered three-manifold.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا