No Arabic abstract
We study theoretically the emph{return probability experiment}, used to measure the dephasing time $T_2^*$, in a double quantum dot (DQD) in semiconducting carbon nanotubes (CNTs) with spin-orbit coupling and disorder induced valley mixing. Dephasing is due to hyperfine interaction with the spins of the ${}^{13}$C nuclei. Due to the valley and spin degrees of freedom four bounded states exist for any given longitudinal mode in the quantum dot. At zero magnetic field the spin-orbit coupling and the valley mixing split those four states into two Kramers doublets. The valley mixing term for a given dot is determined by the intra-dot disorder and therefore the states in the Kramers doublets belonging to different dots are different. We show how nonzero single-particle interdot tunneling amplitudes between states belonging to different doublets give rise to new avoided crossings, as a function of detuning, in the relevant two particle spectrum, crossing over from the two electrons in one dot states configuration, $(0,2)$, to the one electron in each dot configuration, $(1,1)$. In contrast to the clean system, multiple Landau-Zener processes affect the separation and the joining stages of each single-shot measurement and they affect the outcome of the measurement in a way that strongly depends on the initial state. We find that a well-defined return probability experiment is realized when, at each single-shot cycle, the (0,2) ground state is prepared. In this case, valley mixing increases the saturation value of the measured return probability, whereas the probability to return to the (0,2) ground state remains unchanged. Finally, we study the effect of the valley mixing in the high magnetic field limit; for a parallel magnetic field the predictions coincide with a clean nanotube, while the disorder effect is always relevant with a magnetic field perpendicular to the nanotube axis.
We consider theoretically ${}^{13}$C-hyperfine interaction induced dephasing in carbon nanotubes double quantum dots with curvature induced spin-orbit coupling. For two electrons initially occupying a single dot, we calculate the average return probability after separation into the two dots, which have random nuclear-spin configurations. We focus on the long time saturation value of the return probability, $P_infty$. Because of the valley degree of freedom, the analysis is more complex than in, for example, GaAs quantum dots, which have two distinct $P_infty$ values depending on the magnetic field. Here the prepared state and the measured state is non-unique because two electrons in the same dot are allowed in six different states. Moreover, for one electron in each dot sixteen states exist and therefore are available for being mixed by the hyperfine field. The return probability experiment is found to be strongly dependent on the prepared state, on the external magnetic field---both Zeeman and orbital effects - and on the spin-orbit splitting. The lowest saturation value, being $P_infty$=1/3, occurs at zero magnetic field for nanotubes with spin-orbit coupling and the initial state being the groundstate, this situation is equivalent to double dots without the valley degree of freedom. In total, we report nine dynamically different situations that give $P_infty$=1/3, 3/8, 2/5, 1/2 and for valley anti-symmetric prepared states in an axial magnetic field, $P_infty$=1. When the groundstate is prepared the ratio between the spin-orbit splitting and the Zeeman energy due to a perpendicular magnetic field can tune the effective hyperfine field continuously from being three dimensional to two dimensional giving saturation values from $P_infty$=1/3 to 3/8.
The spin interaction of a hole confined in a quantum dot with the surrounding nuclei is described in terms of an effective magnetic field. We show that, in contrast to the Fermi contact hyperfine interaction for conduction electrons, the dipole-dipole hyperfine interaction is anisotropic for a hole, for both pure or mixed hole states. We evaluate the coupling constants of the hole-nuclear interaction and demonstrate that they are only one order of magnitude smaller than the coupling constants of the electron-nuclear interaction. We also study, theoretically, the hole spin dephasing of an ensemble of quantum dots via the hyperfine interaction in the framework of frozen fluctuations of the nuclear field, in absence or in presence of an applied magnetic field. We also discuss experiments which could evidence the dipole-dipole hyperfine interaction and give information on hole mixing.
Quantum dots defined in carbon nanotubes are a platform for both basic scientific studies and research into new device applications. In particular, they have unique properties that make them attractive for studying the coherent properties of single electron spins. To perform such experiments it is necessary to confine a single electron in a quantum dot with highly tunable barriers, but disorder has until now prevented tunable nanotube-based quantum-dot devices from reaching the single-electron regime. Here, we use local gate voltages applied to an ultra-clean suspended nanotube to confine a single electron in both a single quantum dot and, for the first time, in a tunable double quantum dot. This tunability is limited by a novel type of tunnelling that is analogous to that in the Klein paradox of relativistic quantum mechanics.
We present a simple technique which uses a self-aligned oxide etch to suspend individual single-wall carbon nanotubes between metallic electrodes. This enables one to compare the properties of a particular nanotube before and after suspension, as well as to study transport in suspended tubes. As an example of the utility of the technique, we study quantum dots in suspended tubes, finding that their capacitances are reduced owing to the removal of the dielectric substrate.
We report Pauli spin blockade in an impurity defined carbon nanotube double quantum dot. We observe a pronounced current suppression for negative source-drain bias voltages which is investigated for both symmetric and asymmetric coupling of the quantum dots to the leads. The measured differential conductance agrees well with a theoretical model of a double quantum dot system in the spin-blockade regime which allows us to estimate the occupation probabilities of the relevant singlet and triplet states. This work shows that effective spin-to-charge conversion in nanotube quantum dots is feasible and opens the possibility of single-spin readout in a material that is not limited by hyperfine interaction with nuclear spins.