No Arabic abstract
We present a simple technique which uses a self-aligned oxide etch to suspend individual single-wall carbon nanotubes between metallic electrodes. This enables one to compare the properties of a particular nanotube before and after suspension, as well as to study transport in suspended tubes. As an example of the utility of the technique, we study quantum dots in suspended tubes, finding that their capacitances are reduced owing to the removal of the dielectric substrate.
Transport in suspended metallic single wall carbon nanotubes in the presence of strong electron-electron interaction is investigated. We consider a tube of finite length and discuss the effects of the coupling of the electrons to the deformation potential associated to the acoustic stretching and breathing modes. Treating the interacting electrons within the framework of the Luttinger liquid model, the low-energy spectrum of the coupled electron-phonon system is evaluated. The discreteness of the spectrum is reflected in the differential conductance which, as a function of the applied bias voltage, exhibits three distinct families of peaks. The height of the phonon-assisted peaks is very sensitive to the parameters. The phonon peaks are best observed when the system is close to the Wentzel-Bardeen singularity.
A low energy theory of suspended carbon nanotube quantum dots in weak tunnelling coupling with metallic leads is presented. The focus is put on the dependence of the spectrum and the Franck-Condon factors on the geometry of the junction including several vibronic modes. The relative size and the relative position of the dot and its associated vibrons strongly influence the electromechanical properties of the system. A detailed analysis of the complete parameters space reveals different regimes: in the short vibron regime the tunnelling of an electron into the nanotube generates a plasmon-vibron excitation while in the long vibron regime polaron excitations dominate the scenario. The small, position dependent Franck-Condon couplings of the small vibron regime convert into uniform, large couplings in the long vibron regime. Selection rules for the excitations of the different plasmon-vibron modes via electronic tunnelling events are also derived.
We observe two-fold shell filling in the spectra of closed one-dimensional quantum dots formed in single-wall carbon nanotubes. Its signatures include a bimodal distribution of addition energies, correlations in the excitation spectra for different electron number, and alternation of the spins of the added electrons. This provides a contrast with quantum dots in higher dimensions, where such spin pairing is absent. We also see indications of an additional fourfold periodicity indicative of K-K subband shells. Our results suggest that the absence of shell filling in most isolated nanotube dots results from disorder or nonuniformity.
We describe a method to fabricate clean suspended single-wall carbon nanotube (SWCNT) transistors hosting a single quantum dot ranging in length from a few 10s of nm down to $approx$ 3 nm. We first align narrow gold bow-tie junctions on top of individual SWCNTs and suspend the devices. We then use a feedback-controlled electromigration to break the gold junctions and expose nm-sized sections of SWCNTs. We measure electron transport in these devices at low temperature and show that they form clean and tunable single-electron transistors. These ultra-short suspended transistors offer the prospect of studying THz oscillators with strong electron-vibron coupling.
The possibility of low-energy surface plasmon amplification by optically excited excitons in small-diameter single wall carbon nanotubes is theoretically demonstrated. The nonradiative exciton-plasmon energy transfer causes the buildup of the macroscopic population numbers of coherent localized surface plasmons associated with high-intensity coherent local fields formed at nanoscale throughout the nanotube surface. These strong local fields can be used in a variety of new optoelectronic applications of carbon nanotubes, including near-field nonlinear-optical probing and sensing, optical switching, enhanced electromagnetic absorption, and materials nanoscale modification.